Wednesday , 18 July 2018

Art. 05- Vol.26 – No. 1 – 2016

The Hawking Paradox

Roman Chirilă

National Institute for Research & Development in Informatics, ICI Bucureşti

Abstract: Once a black hole forms, it starts losing mass by radiating energy, called Hawking radiation. This Hawking radiation contains no information about the matter inside the black hole and once the black hole evaporates, all information is lost. The Hawking paradox (or the black hole information paradox) suggests that physical information could permanently disappear in a black hole, allowing many physical states to devolve into the same state. It is well known that the Hawking radiation is completely independent of the material entering the black hole but if the material entering the black hole were a pure quantum state, the transformation of that state into the mixed state of Hawking radiation would destroy information about the original quantum state. On the other hand, according to the quantum mechanics, the complete information about a system is encoded in its wave function up to when the wave function collapses.

The evolution of the wave function is determined by a unitary operator, and unitarity implies that information is conserved in the quantum sense. This is the strictest form of quantum determinism. The Hawking paradox is controversial because it violates the quantum determinism and presents a physical paradox.

The present paper presents the physical aspects of the black hole loss information paradox but the conflicts with the laws of quantum physics, which say that such information can never be completely wiped out, are also discussed.

Keywords: black holes, paradox, quantum determinism, Hawking radiation.

View all article


  1. Hawking, S.: The Hawking Paradox. Discovery Channel, 2006,The: Discovery, Inc.
  2. Jenny, H.:–dox.html#.VUxcDY6qpHw, July, 2004.
  3. Samir, D. M.:,The information paradox: A pedagogical introduction, Submitted on 5 Sep 2009,arXiv: 0909.1038.
  6. Hawking, S.: A Brief History of Time, Bantam Books, 1988.
  8. http: //ro.
  11. Bousso, R.: The Holographic Principle.Reviews of Modern Physics, 2002, 74 (3): 825–874.
  12. Majumdar, P.: Black Hole Entropy and Quantum Gravity, 1998,ArXiv: General Relativity and Quantum Cosmology.Bibcode: .73..147M.
  14. Landauer, R.: Information is Physical, Phys. Today 44, 23 (1991).
  1. Baocheng, Zhang; Qing-yu, Cai; Ming-sheng, Zhan; Li, You: Information conservation is fundamental: recovering the lost information in Hawking radiation – http://www.
  2. Nielsen, M. A.; Chuang, I. L.: Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, UK, 2000.
  3. Susskind, L.; Lindesay, J.: Black Hole, Information and the String Theory Revolution, World Scientific Publishing Co. Ltd., Danvers, USA, 2005.
  4. Wootters,W. K.; Zurek, W. H.: A single quantum cannot be cloned, Nature 299, 802 (1982).
  5. Penrose, R.: The Emperor’s New Mind: Concerning Computers, Minds, and The Laws of Physics, Oxford Univ. Press, 1989 (Rhone-Poulenc science book prizein 1990); Mintea noastră cea de toate zilele. Despre gândire, fizică şi calculatoare, Editura Tehnică, 1996, 2001.
  6. Pati, A. K.; Braunstein, S. L.: Impossibility of deleting an unknown quantum state, Nature 404, 164 (2000).
  8. Ciobanu, Ghe.: Termodinamică şi fizică statistică. Editura Tehnică, Bucureşti, 2004.
  9. Landau, L. D.; Lifshitz, E. M.: Statistical Physics. Pergamon Press, 1980.
  10. Ţiţeica, Ş.: Elemente de mecanică statistică. Editura Tehnică, București, 1956.
  12. Susskind, L.: String theory and the principle of black hole complementarity, Physical Review Letters 71(15), 1993: 2367–2368.arXiv:hep-th/9307168.
  13. Susskind, L.: The world as a hologram,Journal of Mathematical Physics 36(11) 1995: 6377–6371.arXiv:hep-th/9409089.Bibcode:…36.6377S.doi:10.1063/1.531249.
  14. Stephens, C. R.; ‘t Hooft, G.; Whiting, B. F.: Black hole evaporation without information loss.Classical and Quantum Gravity11(3) 1994 621. arXiv: gr-qc/9310006. Bibcode: .11..621S.doi:10.1088/0264-9381/11/3/014.
  15. Maldacena, J. M.: The Large N Limit of Superconformal Field Theories and Supergravity, Theor. Math. Phys 2, pp. 231–252, 1998. arXiv:hep-th / 9711200. Bibcode 1998AdTMP…2..231M.
  16. Polchinski, J.; Almheiri, A.; Sully, J.; Marolf, D.: Astrophysics: Fire in the hole, July, 2012.
  17. Rovelli, C.; Vidotto, F.: Planck Stars, arXiv:1401.6562 – 8, Feb 2014.
  18. Penrose, R.:, What Came Before the Big Bang? Cycles of Time, Vintage Books, 2011.
  19. Yirka, B.: – Septembrie, 2014.
  20. Savu, M.:, 2014.
  21. Abhas, M.: BARC, Theory Division, Non-occurrence of trapped surfaces and Black Holes in spherical gravitational collapse: An abridged version, arXiv:astro-ph/9910408v5, 22 Oct 1999.
  22.–dox-much-before-stephen-hawking-1959537 5, February 2014.
  23., 25 octombrie 2012.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.