Monday , 16 September 2019

Art. 05 – Vol. 27 – No. 2 – 2017

New Software Applications for System Identification

Vasile SIMA
Alexandru STANCIU
National Institute for Research & Development of Informatics – ICI Bucharest

Abstract: A set of applications for identification of linear multivariable systems is presented. The incorporated algorithms use subspace-based techniques (MOESP, N4SID, or their combination) to find a standard discrete-time state-space description, and optionally, the covariance matrices and predictor gain matrix, using input and output (I/O) trajectories. For flexibility, separate applications are offered for computing the processed upper triangular factor of the block-Hankel-block matrix of I/O data (using fast or standard QR factorization algorithms), for computing the system matrices, predictor gain matrix, for estimating the initial state of the system, and for its simulation. The applications are encapsulated in Docker containers which are managed by the Kubernetes platform. This ensures greater flexibility, enhanced security, and fast execution. The services to be implemented are part of a cloud-based open platform for process control applications.

Keywords: identification algorithms, linear multivariable systems, numerical algorithms, parameter estimation, subspace methods, singular value decomposition, software.


  1. VERHAEGEN, M.: Subspace model identification. Part 3: Analysis of the ordinary output-error state-space model identification algorithm. J. Control, 58(3):555-586, 1993.
  2. VERHAEGEN, M.: Identification of the deterministic part of MIMO state space models given in innovations form from input-output data. Automatica, 30(1):61-74, 1994.
  3. VERHAEGEN, M.; DEWILDE P.: Subspace model identification. Part 1: The output-error state-space model identification class of algorithms. J. Control, 56(5): 1187-1210, 1992.
  4. VERHAEGEN, M.; DEWILDE, P.: Subspace model identification. Part 2: Analysis of the elementary output-error state-space model identification algorithm. J. Control, 56(5): 1211-1241, 1992.
  5. VAN OVERSCHEE, P.; DE MOOR, B.: N4SID: Two subspace algorithms for the identification of combined deterministic-stochastic systems. Automatica, 30(1):75-93, 1994.
  6. VAN OVERSCHEE, P.; DE MOOR, B.: Subspace Identification for Linear Systems : Theory – Implementa­tion – Kluwer Academic Publishers, Boston/ London/Dordrecht, 1996.
  7. LARIMORE, W.: System identification, reduced order filtering and modeling via canonical variate analysis. In Proceedings of the American Control Conference, San Francisco, CA, USA, 445-451, 1983.
  8. LJUNG, L.: System Identification Toolbox. For Use with User’s Guide. Version 5. The Math-Works, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098, 2000.

View full article

  1. SIMA, V.: Algorithms and LAPACK-based software for subspace identification.   In Proceedings of The 1996 IEEE International Symposium on Computer-Aided Control System Design, September 15-18, 1996, Ritz-Carlton, Dearborn, Michigan, S.A., pp. 182-187, 1996.
  2. SIMA, V.: Subspace-based algorithms for multivariable system identification. Studies in Informatics and Control, 5(4):335-344, 1996.
  3. MASTRONARDI, N.; KRESSNER, D.; SIMA, V.; VAN DOOREN, P.; VAN HUFFEL, S.: A fast algorithm for subspace state-space system identification via exploitation of the displacement structure. Journal of Appl. Math., 132(1):71-81, 2001.
  4. SIMA, V.; SIMA, D. M.: High-performance algorithms for linear multivariable system identification. Romanian Journal of Information Science and Technology, 6(3-4):345-375, 2003.
  5. SIMA, V.; SIMA, D. M.; VAN HUFFEL, S.: High-performance numeri-cal algorithms and software for subspace-based linear multivariable system identification. Comput. Appl. Math., 170(2):371-397, 2004.
  6. BENNER, P.; MEHRMANN, V.; SIMA, V.; VAN HUFFEL, S.; VARGA, A.: SLICOT — A subroutine library in systems and control theory. In B. N. Datta, editor, Applied and Computational Control, Signals, and Circuits, volume 1, chapter 10, pp. 499-539. Birkhäuser, Boston, 1999.
  7. SIMA, V.; VAN HUFFEL, S.: Efficient numerical algorithms and software for subspace-based system In Proceedings of the 2000 IEEE International Conference on Control Applications and IEEE International Symposium on Computer-Aided Control Systems Design, September 25-27, 2000, Anchorage Hilton, Anchorage, Alaska, U.S.A., pp. 1-6. Wilson Center for Research & Technology, Xerox Corporation, 800 Phillips Rd. MS 128-56E, Webster, NY 14580, 2000. Omnipress.
  8. SIMA, V.; VAN HUFFEL, S.: Performance investigation of SLICOT system identification toolbox. In Proceedings of the European Control Conference, ECC 2001, 4-7 September, 2001, Seminario de Vilar, Porto, Portugal, 3586-3591, 2001.
  9. SIMA, V.; SIMA, D. M.; VAN HUFFEL, S.: SLICOT system identification software and applications. In Proceedings of the 2002 IEEE International Conference on Control Applications and IEEE Interna­tional Symposium on Computer Aided Control  System  Design, CCA/CACSD 2002, September 18-20, 2002, Scottish Exhibition and Conference Centre, Glasgow, Scotland, U.K., 45-50. Omnipress, 2002.
  10. ANDERSON, E.; BAI, Z.; BISCHOF, C.; BLACKFORD, S.; DEMMEL, J.; DONGARRA, J.; DU CROZ, J.; GREENBAUM, A.; HAMMARLING, S.; MCKENNEY, A.; SORENSEN, D.: LAPACK Users’ Guide: Third Edition. Software ∙ Environments ∙ Tools. SIAM, Philadelphia, 1999.
  11. DE MOOR, B.; DE GERSEM, P.; DE SCHUTTER, B.; FAVOREEL, W.: DAISY: A database for identification of Journal A, Special Issue on CACSD (Computer Aided Control Systems Design), 38:4-5, 1997.
  12. SIMA, V.:  Efficient data processing for subspace-based multivariable system identification. In Proceed­ings of IFAC Workshop on Adaptation and Learning in Control and Signal Processing (ALCOSP 2004), and IFAC Workshop on Periodic Control Systems (PSYCO 2004), August 30th – September 1st, 2004, “Pacifico Yokohama” Pacific Convention Plaza, Yokohama, Japan, pp. 871-876, 2004.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.