Monday , 9 December 2019
roen

Art. 07 – Vol. 21 – No. 3 – 2011

Algoritmms for  2D reconstruction  for the medieval fortress and ancient cities; study case – medieval fortress from Transylvania

Dragoş Nicolau, Dragoş Barbu,  Laura Ciocoiu,  Dragoş Smada, Antonio Cohal, Ionuţ Petre, Valentin Răduţ
Institutul Naţional de Cercetare – Dezvoltare în Informatică, ICI – Bucureşti

Abstract: This paper presents the algorithms for image analysis, edge detection and  image  segmentation from old pictures in order to make the virtual 2D reconstruction.

Keywords: image analysis,  edge detection, image  segmentation,  old pictures, 2D virtual reconstruction

View full article

REFERENCES:

  1. * * * Adobe Photoshop
  2. * * * Delphi – A Guide to Programming
  3. * * * SQL server
  4. 2D From paintings and photos: http://iit-iti.nrc-cnrc.gc.ca/projects-projets/paintings-   html
  5. ANSYS web site: http://www.ansys.com
  6. BOYKOV, Y.; KOLMOGOROV, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. submitted IEEE Trans. Pattern Anal. and Machine Intell., 2004.
  7. CARSON, C.; BELONGIE, S.; GREENSPAN, H.; BLOBWORLD, MALIK J.: Image segmentation using expectation-maximization and its application to image querying. IEEE Trans. Pattern Anal. And Machine Intell., 24(8):1026–1038, 2002.
  8. CHRISTOUDIAS, C. M.; GEORGESCU, B.; MEER,: Synergism in low level vision. In 16th International Conference on Pattern Recognition., Quebec City, Canada, volume IV, pp. 150–155, 2002.
  9. CIOCOIU, L.; BOROZAN, A-M.; COŞOIU, C.: Tema A19 / 2001 – “Muzeu virtual privind arhitectura până la începutul sec. XX în reţeaua Internet”.
  10. CIOCOIU, L.; BOROZAN, A-M.; COŞOIU, C.: Tema A20/2001 – “Arhive virtuale specifice muzeelor judeţene în reţeaua Internet”.
  11. COCQUEREZ, J.P.; PHILIPP, S.: Analyze d’Images:Filtrage et Segmentation.
  12. Comaniciu, D.; Meer, P.: Mean shift: A robust approach toward feature space analysis. IEEE Trans. Pattern Anal. and Machine Intell., 24:603–619, 2002.
  13. Cour, T.; Yu, S.; Shi, J.: Normalized cuts matlab code. Computer and Information Science, Penn State University. Code available at http://www.cis.upenn.edu/˜jshi/software/.
  14. CUBIT Mesh Generation Toolkit, web site: http://cubit.sandia.gov/
  15. El-Hakim, S.; Beraldin, J.-A.; Picard, M.: 2D Modeling of Heritage Monuments. GIM International, 17(4): 13-15. April 2003. NRC 45821.
  16. El-Hakim, S.F.: Semi-automatic 2D Reconstruction of Occluded and Unmarked Surfaces from Widely Separated Views. Proceedings of ISPRS Commission V Symposium, Close Range Visualization Techniques, Corfu, Greece. 1-2, 2002, pp. 143-148 NRC 44944.
  17. ESTRADA, F.J.; JEPSON, A.D.; CHENNUBHOTLA, C.: Spectral embedding and min-cut for image segmentation. In British Machine Vision Conference, 2004.
  18. FEGS web site: http://fegs.co.uk
  19. FELZENSZWALB, P.F.; HUTTENLOCHER, D.P.: Efficient graph-based image segmentation. Int. Journ. of Comp. Vis., 59(2):167–181, 2004.
  20. GEORGE, P.L.; HECHT, F.; SALTEL E.: Automatic Mesh Generator with Specified Boundary. Computer Methods in Applied Mechanics and Engineering, North-Holland, vol. 92, 1991, 269-288.
  21. Home page: http://iit-iti.nrc-cnrc.gc.ca/r-d/2D-vir-reality-realite-vir-2D_e.html
  22. LOHNER, R.: Progress in Grid Generation via the Advancing Front Technique. Engineering with Computers, vol 12, 1996, pp.186-210.
  23. MacNeal-Schwendler Home Page, web site: http://www.mscsoftware.com/
  24. MALIK, J.; BELONGIE, S.; LEUNG, T.; SHI, J.: Contour and texture analysis for image segmentation,  Journ. of Computer Vision, 43(1):7–27, 2001.
  25. MARION, A.: Introduction aux Tehniques de Traitement d’Images.
  26. MARTIN, D.; FOWLKES, C.: The Berkeley Segmentation Dataset and Benchmark. http://www.cs.berkeley.edu/projects/vision/grouping/segbench/.
  27. MARTIN, D.; FOWLKES, C.; MALIK, J.: Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Trans. Pattern Anal. and Machine Intell., 26(5):  530–549, 2004.
  28. MARTIN, D.; FOWLKES, C.; MALIK, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In Proc. 8th Int’l Conf. Computer Vision, volume 2, pp. 416–423, July 2001.
  29. NOWOTTNY, DIETRICH: Quadrilateral Mesh Generation via Geometrically Optimized Domain Decomposition. Proceedings, 6th International Meshing Roundtable, 1997, pp. 309-320.
  30. OWEN, S. J.: Meshing Software Survey. Structured Grid Generation Software, web page: http://www.andrew.cmu.edu/user/sowen/software/structured.html
  31. OWEN, S.: A survey of unstructured mesh generation technology. Proceedings of the 7th International Meshing Roundtable, pp. 239-267, http://www.andrew.cmu.edu/user/sowen/survey, 1998.
  32. OWEN, STEVEN J.; STATEN, MATTHEW L.; CANANN, SCOTT A.; SAIGAL, SUNIL: Advancing Front Quad Meshing Using Local Triangle Transformations. Proceedings, 7th International Meshing Roundtable, 1998.
  33. PRATT, W.K.: Digital Image Processing. 2nd Edition, John Wiley & Sons, New York, 1991.
  34. RUSS, J.C.: The Image Processing Handbook. 2nd Edition, CRC Press.
  35. SHI, J.; FOWLKES, C.; MARTIN, D.; SHARON, E.:  Graph based image segmentation tutorial. CVPR 2004. http://www.cis.upenn.edu/˜jshi/GraphTutorial/.
  36. SHI, J.; MALIK,J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. And Machine Intell., 22(8):888–905, 2000.
  37. Staten, Matthew L.; Canann, Scott A.; Owen, Steve J.: BMSWEEP: Locating Interior Nodes During Sweeping. 7th International Meshing Roundtable, 1998.
  38. TetMesh, GSH2D web site: http://www.simulog.fr/tetmesh/
  39. TOUMAZET, J.J.: Traitement de l’Image sur Micro-ordinateur.
  40. WHITE, DAVID R.: Automated Hexahedral Mesh Generation by Virtual Decomposition. Proceedings, 4th International Meshing Roundtable, Sandia National Laboratories, 1995, pp. 165-176.
  41. WHITE, DAVID R.; Kinney, Paul: Redesign of the Paving Algorithm: Robustness Enhancements through Element by Element Meshing. Proceedings, 6th International Meshing Roundtable, Sandia National Laboratories, 1997, pp. 323-335.
  42. YU, S.; SHI, J.: Multiclass spectral clustering. In Proc. Int’l Conf. Computer Vision, 2003.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.