Art. 08 – Vol. 25 – No. 1 – 2015

Error Estimation Methods in Function Approximation

Liviana TUDOR
LTudor@upg-ploiesti.ro
Departamentul Informatică, Tehnologia Informaţiei, Matematică şi Fizică, Universitatea Petrol-Gaze din Ploieşti

Adrian MOISE
AMoise@upg-ploiesti.ro
Departamentul Automatică, Calculatoare şi Electronică, Universitatea Petrol-Gaze din Ploieşti

Abstract: This paper presents two methods to estimating errors in functions approximation, using the numerical and neural approach. The numerical method in function approximation uses Lagrange polynomials interpolation and describes the absolute interpolation error. The neural approach proves the property of a feed-forward artificial network to be a universal approximator and presents the neural errors propagation during the training process. The experimental results highlight the advantages of the intelligent neural systems in solving problems of function approximations..

Keywords: errors, function approximation, numerical methods, Lagrange polynomial, neural approximation, Backpropagation algorithm, feed-forward neural network.

REFERENCES

  1. BEU, T.: Calcul numeric în Turbo Pascal, Editura Micro-Informatica, Cluj-Napoca, 1992, 203 p.
  2. BUNECI, MĂDĂLINA ROXANA: Metode Numerice – aspecte teoretice şi practice, Editura Academica Brâncuşi, Târgu-Jiu, 2009, 284 p.

View full article

  1.  CIUPRINA, GABRIELA: Suport didactic pentru disciplina Algoritmi numerici, Interpolarea funcţiilor, Universitatea “Politehnica” Bucureşti, 2012.
  2. CYBENKO, G.: Approximation by superpositions of a sigmoidal function, Mathematics of Control, Signals and Systems, vol. 2, no. 4, 1989.
  3. DUMITRESCU, D.; HARITON, C.: Reţele neuronale. Teorie şi aplicaţii, 1996, Editura Teora.
  4. HORNIK, K.; STINCHOMBE, M.: Multilayer feedforward networks are universal approximators, Neural Networks, vol. 2, 1989.
  5. LEWIS, F. L.; JAGANNATHAN, S.; YESILDIREK, A.: Neural Network Control of Robot Manipulators and Nonlinear Systems, Taylor and Francis, 1999.
  6. MOISE, A.: Reţele neuronale pentru conducerea roboţilor, MatrixRom, Bucureşti, 2012, 217p.
  7. MOISE, A.: Reţele neuronale pentru recunoaşterea formelor, MatrixRom, Bucureşti, 2005, 310 p.
  8. SCHALKOFF, R. J.: Artificial Neural Networks, McGraw-Hill International Ed., New York, 1997.
  9. TUDOR, NICOLETA LIVIANA: Reţele neuronale artificiale. Aplicaţii Matlab, Editura MATRIX ROM Bucureşti, 2012, 195 p.

 

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.