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Abstract: The current paper establishes a rapid, real-time algorithm for the synthesis of the reaction matrices 

used by compensators that reduces multivariable linear systems to extended systems that are cyclical. Thus, 

the driving of the extended systems (original multivariable system plus compensator) is reduced to a reaction 

that depends on the outputs and a set of references calculated by the proposed algorithm. The algorithm 

derives the structure of the compensator and the values of its components (amplifiers and integrators) as well 

as the values of the references. The paper is divided into two main sections: the derivation of the algorithm 

and the description of the program.  

Keywords: multivariable linear system, compensator design, automated tools. 

Proiectarea automată a sistemelor lineare  

multivariabile compensate 
Rezumat: Lucrarea de față stabilește un algoritm rapid, în timp real pentru sinteza matricilor de reacție 

folosite de compensatoarele de stare. Această metoda reduce sistemele liniare multivariabile la sisteme 

extinse care sunt ciclice. Conducerea sistemelor extinse (formate din uniunea sistemului original plus 

compensatorul de stare) este redusă la o reacție care depinde de ieșiri și de niște referințe calculate de 

algoritmul propus. Algoritmul propus obține structura compensatorului, valorile componentelor 

(amplificatoare și integratoare) și valorile intrărilor de referință. 

Cuvinte cheie: sisteme lineare multivariabile, proiectarea compensatoarelor, programe pentru proiectare 

automată. 

1. Introduction 

The control of multivariable linear systems has been greatly improved with the introduction 

of the compensator based design [Brasch, Davison]. The main challenges in designing such 

systems can be divided into several categories: 

• establish the minimal structure of the compensator (the minimal number of amplifiers 

and integrators needed); 

• establish the optimal values of the amplifiers;  

• establish the values of the external references driving the extended system;  

• perform the above calculations in real time for systems that vary in time;  

• convert the theory of the algorithms into a unitary, minimalistic program. 

In the following, we address all the above issues. Compensator based design is far superior 

to estimator based design due to the fact that it is less complex and cheaper [Bernat]. This paper is 

dedicated to my mentor, prof. dr. eng. Vlad Ionescu, the person responsible for my education in the 

theory of automatic control.  

2. Mathematical foundations 

Theorem [Gelfand]: The polynomials 0 1( ) ... n

np s p p s p s= + +  and 

0 1( ) ... m

mq s q q s q s= + +  are co-prime if and only if the rank of the “resultant” matrix R  is 

( )rank R m n= +  where: 
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The subroutine PRIM(R,Q,N,IM,IO) constructs the resultant matrix ( , )R NM NM  where 

,NM N M M N K= + = −  and K  is the order of differentiation of the characteristic 

polynomial
1

1 0( ) ....N N

Q Ns s s −

− = + +  . ( )Q s  is the characteristic polynomial of matrix Q . 

In other words, PRIM (described later in the paper) constructs the resultant matrix between 

( )Q s and
( ) ( )K

Q s  whereby polynomial
( ) ( )K

Q s  is the K-th derivative of the polynomial ( )Q s . 

The subroutine accepts as input the matrix ( 1, )Q N N+  constructed by subroutine CQ as well as 

the numbers , ( )N NM N N K= + −  and IP K=  , the order of differentiation of the characteristic 

polynomial and returns the resultant matrix ( , )R NM NM . 

The Penrose Pseudoinverse Theorem [Penrose]: The system of linear equations: 

*E X =     (2.2) 

where E  is a n r  matrix, ( )X r  and ( )n  are vectors has the unique solution of minimal norm: 

# *X E=    (2.3) 

where 
#E  is the r n Penrose pseudoinverse of matrix E . 

Brasch-Pearson Theorem I [Brasch]: If the triplet of matrices ( , , )A B C  whereby matrices 

( , , )A B C are defined as ( , ), ( , ), ( , )A A n n B B n r C C m n= = =  , is canonical then it exists a 

matrix K  so the matrix A BKC+  is cyclical. A matrix is cyclical if all the eigenvalues of its 

characteristic polynomial have degree of multiplicity 1. 

Brasch-Pearson Theorem II [Brasch]: If the triplet ( , , )A B C  is canonical then for any set 

1 n{ ,... }e l  + =  where min( , )c ol p p=  where ,c op p  are respectively the controllability and 

observability orders of the system defined by ( , , )A B C there exists a matrix K so that the 

eigenvalues of matrix e e eA B KC+ are the elements of e . 

, , ,

, , , , , ,

0 0 0
, ,

0 0 0 0

n l n l m l

e e e

l n l l l r l l l n l l

A B C
A B C

I I

     
= = =     
     

  

Davison-Wang Theorem I [Davison]:  If the triplet ( , , )A B C  is canonical then it exists K  

so the matrix A BKC+ has all distinct eigenvalues (have degree of multiplicity 1). 

Davison-Wang Theorem II [Davison]: If the triplet ( , , )A B C  is canonical then the set 
r m{K|K R ,  has some non-distinct eigenvalues}A BKC=  + is either void or is a hypersurface in 

r mR 
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Davison-Wang Theorem III [Davison]: If the triplet ( , , )A B C  is canonical and A  is 

cyclical then: 

• the set 
r 1{l|l R ,( , ) completely controllable}A Bl=    is either void or a 

hypersurface in 
r 1R 

   

• the set 
1 mR {r|r R ,( , ) completely observable}A rC=    is either void or a 

hypersurface in 
1 mR 

 

Theorem II Davison-Wang shows that “almost any 
r mK R   makes A BKC+ cyclical. 

Theorem III Davison-Wang shows that “almost any 1rl R   and almost any
1 mr R  ” will make 

the triplet ( , , )A BKC Bl rC+  canonical where 
r mK R   is the one that made A BKC+  cyclical. 

3. Compensator-assisted pole allocation 

Let the dynamics of a system be described by the equations: 

x Ax Bu

y Cx

•

= +

=
  (3.1) 

where ( , ), ( , ), ( , )A n n B n r C m n  are time invariant. Let u Ky w= +  where w  are some references 

to be determined later. Then, the system becomes: 

( )x A BKC x Bw

y Cx

•

= + +

=
 (3.2) 

The transfer function is: 

1( ) ( )nG s C sI A BKC B−= − −   (3.3) 

Let:
, , ,

, , , , , ,

0 0 0
, ,

0 0 0 0

n l n l m l

e e e

l n l l l r l l l n l l

A B C
A B C

I I

     
= = =     
     

  

The first index represents the number of lines in the matrix, the second index represents the 

number of columns. Let ,c op p  be the smallest positive integers for which: 

rank[ , ,.... ] , rank[ , ,....( ) ]c op pT T T T TB AB A B n C A C A C n= =   (3.4) 

The, the second Brash-Pearson theorem tells us that: 

If the triplet ( , , )A B C  is canonical then for any set 1 n{ ,... }e l  + =  where 

min( , )c ol p p=  there exists a matrix K so that the eigenvalues of matrix e e eA B KC+ are the 

elements of e .  

Proof: according to Theorem I Davison-Wang if the triplet ( , , )A B C  is canonical then it 

exists 1K  so the matrix 1 1A A BK C= + has all distinct eigenvalues (is cyclical). Obviously 

1( , , )A B C  is canonical. Let: 

1 ,

2

, ,

0

0 0

r l

l m l l

K
K K

 
= + 
 

  (3.5) 
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2

, ,

0
 where 

0 0

n l

e e e e e e e

l n l l

A BK C
A B KC A B K C A

+ 
+ = + =  

 
  (3.6) 

So, all that is left to prove is that there exists 2K so that the 
1

2e e eA B K C+ eigenvalues are the 

elements of e . The transfer function of the extended system is: 

1 1

2( ) ( )e e n l e e e eG s C sI A B K C B−

+= − −   (3.7) 

The poles of the extended system are given either by the equation: 

1

1 ,

2

,

1

( )( ) 0
det{ ( ) }

0 ( )
( ) 0

( )

n l

r l e e

l n l

e r r l

sD s sI A
sD s I K C B

D s I
s

s D s

−

+

+ −

 −
−  

  = =   (3.8) 

or by the equation: 

1

1 ,

2

,

1

( )( ) 0
det{ ( ) }

0 ( )
( ) 0

( )

n l

m l e e

l n l

e m m l

sD s sI A
sD s I C B K

D s I
s

s D s

−

+

+ −

 −
−  

  = =  (3.9) 

where: 

1 1 2 1 1

1 1 1 0( ) det( ) ....n n

nD s sI A s s s  − −

−= − = + + + +   (3.10) 

On the other hand, the desired characteristic polynomial of the extended matrix 
1

2e e eA B K C+ has the form: 

1

1 1 0( ) .....n l n l

e n ls s s s  + + −

+ − = + + + +   (3.11) 

There are two cases to be studied: 

a) cl p=  Since 1A has all distinct eigenvalues (is cyclical) and 1( , )A C is completely 

observable, it follows that there exists 

1

.

.

m







 
 
 =
 
 
 

  so that 1( , )TA g  is completely 

observable, where
Tg C = . Even more than that, “almost any ” makes 

1( , )TA g completely observable. Let’s choose 2K to be of the form: 

1 1, 1 1,

, 1 ,

2

1 1, 1 1,

, 1 ,

. . . . .

. . .

. . .

. . . . .

. . . . .

. . .

. . .

. . . . .
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T
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 (3.12) 

We can further refine the above form for 2K  to: 
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(3.13) 

where 
0

1 0l + = . Substituting the expression for 2K , we obtain: 

1
0 1 0

1 1

( ) ( ) [ ( ) ( ) ( )]
l r

l l i l i j

e i i i j

i j

s D s s D s s s N s  
+

− + −

= =

 = + + −    (3.14) 

In the above: 

2 1

1[ ( ),....., ( )] [ , ,...1]*n n

rN s N s s s L− −=    (3.15) 

1
1 1 1 1

1 1 1 1

1

[ , ,...., ]
n

T T T T T n T n j

n n j

j
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=

= + +   (3.16) 

Requiring that the two characteristic polynomials are identical we obtain the system: 
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 (3.17) 

The above can be written in the contracted form: 

E X =    (3.18) 

In (3.18) the matrix E has dimensions ( ) [ ( 1)]l n l r l+  + + , X has dimension 

[ ( 1)] 1l r l+ +   and  . Is the vector of dimension n l+ . The arrows in matrix (3.17) are a marker 

for the extent of vector L , i.e. they show the number of rows occupied by the vector L . At this 

point, in order to complete the proof of Brash-Pearson theorem, we need to introduce the 

following: 

Theorem: The system (3.18) is compatible and rank( )E n l= + .  

Proof: Since rank[ , ,.... ]cp
B AB A B n=  it follows that ( 1)r l n+  , so ( 1)l r l l n+ +  +  

therefore the system has more unknowns that equations. If we can show that rank( )E n l= + then 

the system is compatible, so there exists at least one solution. In order to do that we need to bring 
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E to the block diagonal form: 

, ( 1)

1 0 . . . 0

. .

. . .

. 1 0 0

. .

. .

n r l

x

E
x x

S +

 
 
 
 
 
 
 
 
 

  (3.19) 

where the upper left corner block is a l l  matrix and the lower right corner block is a ( 1)n r l +  

matrix. So, all we need to show is that rank( )S n= . It is easy to show that: 

1

1

1

1

[ , ,...., ].

.

T

T

l

T n

g

g A

S B AB A B

g A −

 
 
 
  
 
 
 
 

  (3.20) 

We know that: 

1

1 1rank[ , ,.... ]ng A g A g n− =  because g  was determined such that 1( , )A g  is completely 

observable 

1rank[ , ,...., ]lB AB A B n=  because cl p=   

Therefore: 

rank( )

rank( )

S n

E n l

=

= +
  (3.21) 

If ( 1)l r l l n+ + = +  then the system is completely determined and its solution is 
1 *X E−=    

If ( 1)l r l l n+ +  +  then the system undetermined and there is at least one solution, the 

solution of minimum norm is 
# *X E=  where 

#E  is the Penrose pseudoinverse of matrix E . 

Once we have determined X 2K  follows immediately. Following Theorem I Davison-Wang we 

have determined earlier matrix 1K  that makes 1 1A A BK C= +  cyclical, so, the reaction matrix that 

gives the desired pole allocation for the extended system is: 

1 ,

2

, ,

0

0 0

r l

l m l l

K
K K

 
= + 
   (3.22) 

In a later section we will show a very elegant method of computing the additional references w .  

ol p=   

Since 1A has all distinct eigenvalues (is cyclical) and 1( , )A B is completely controllable, it 

follows that there exists 

1

.

.

r

h

h

h

 
 
 =
 
 
 

 so that 1( , )A t  is completely controllable, where t Bh= . Even 

more than that, “almost any h ” makes 1( , )A t completely observable. Let’s choose 2K to be of the 
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Let: 

1
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1
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Following the same reasoning as the one used at point a) we obtain the system: 
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  (3.25) 

The above can be written in the contracted form: 

F X =    (3.26) 

Exactly as at point a) we show that rank( )F n l= +  and the solution of the system 

is
# *X F D= . F  has dimension ( ) ( ( 1))l n l m l+  + + , X  is a vector with dimension 

( 1)l m l+ +  and   is a vector with dimension n l+ . 

4. Description of the subroutines 

UNIT(B,N) creates the unit matrix ( , ) NB N N I=   

TRAM(A,B,M,N) creates the transpose of matrix ( . )A M N  : ( . ) ( . )TB N M A M N=  

PROMAT(A,B,C,M,L,N) constructs the product: ( , ) ( , )* ( , )C M N A M L B L N=   

HAZ(S,N,Z) creates the random vector ( )Z N  from an arbitrary seed number S   

ZADEH(A,N,ALFA) calculates the coefficients 0 1(1),......., ( )nALFA ALFA N  −= =  of 

the characteristic polynomial associated with the matrix ( , )A N N  by using the algorithm 

described by Zadeh 

DIAG(A,B,B,RO,I1,I2) brings the matrix ( , )A N N  to the diagonal form ( , )B N N . DIAG 
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returns the rank RO  of matrix ( , )A N N as well as 1I , the index of the first non-null diagonal 

element and 2I , the index of the last non-null diagonal element, to be used in the calculation of the 

pseudoinverse (see next). 

PS(L,N,R,LPI) constructs the Penrose pseudoinverse of matrix ( , )L N R , 

#( , ) ( , )LPI R N L N R=  

ESALON(A,M,N) constructs the form of reduced echelon of matrix ( . )A M N  

          CONOBS(IV,V,W,AA,N) constructs the matrix 
1( , * ) [ , * ,...., * ]NW N N IV V AA V AA V−=   

CQ(Q,N,AL) constructs the coefficients of the higher order derivatives of characteristic 

polynomial 
1

1 0( ) ....N N

A Ns s s −

− = + +  associated with the matrix ( , )A N N . These 

coefficients are stored column by column in the matrix ( 1, )Q N N+ . The first column is the 

coefficients of the characteristic polynomial 1 0[1, ,... ]N − , the last column are the coefficients of 

the n-th derivative. The matrix ( 1, )Q N N+  is used by PRIM (see next) in order to determine the 

order of multiplicities of the roots of the characteristic polynomial. 

PRIM(R,Q,N,NM,IP) constructs the resultant matrix ( , )R NM NM  where 

,NM N M M N K= + = −  and IP K= where K  is the order of differentiation of the 

characteristic polynomial .
1

1 0( ) ....N N

A Ns s s −

− = + + . In other words, PRIM constructs the 

resultant matrix between ( )A s and 
( ) ( )K

A s . The subroutine accepts as input the matrix 

( 1, )Q N N+  constructed by CQ as well as , ( )N NM N N K= + −  and IP K= , the order of the 

derivative of the characteristic polynomial and returns the resultant matrix ( , )R NM NM . 

5. Description of the main program 

Input matrices ( , ), ( , ), ( , )A N N B N IR C M N  describing the dynamics of the system to be 

compensated. 

Construct the controllability matrix 
2( , * ) ( , , ... )NQC N N IR B AB A B A B=   

Bring QC  QC to the echelon reduced form in order to calculate the controllability index IC 

Determination of the controllability index IC: 

Construct the observability matrix 
2( , * ) ( , , ( ) ...( ) )T T T T T T N TQO N N M C A C A C A C=  

Bring QO  to the echelon reduced form in order to calculate the controllability index IO 

Determination of the observability index IO 

Generate matrix 1( , )K IR M  that makes * 1*Y A B K C= +  cyclic 

1( , ) ( , )A N N Y N N=   

1 1 1 1

1 1 1 0det( ) ....N N

NsI A s s s  −

−− = + + + +   

IF we were NOT successful in making * 1*Y A B K C= + cyclic, we will apply the 

algorithm Davison-Wang 

IF we failed to bring Y to the cyclic form in our first attempt, we can try a programmable 

number of more tries  

We managed to bring Y to the cyclic form ( , )A G   
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Generate the random vector ( )ETA N and the random vector ( ) ( , )* ( )TG N C M N ETA N=  

that makes the pair ( , )A G completely observable. 

IF we failed to find G in a programmable number of tries, we have to give up or try more 

times.  

Generate the random vector ( )H IR  and the random vector ( ) ( , )* ( )T N B N IR H IR=  that 

makes the pair ( , )A T  completely controllable. 

IF we failed to find T in a programmable number of tries, we have to give up or try more 

times.  

C Determine the number of integrators min( , )L IC IO= . 

Input the coefficients of the desired characteristic polynomial in the form of the vector 

( )BETA N L+ .  

IF L=IC Then 

Begin 

Construct matrix 

1

1 1

*

* * *

( , ) .

.

.

T

T T

N

G B

G A B a G B

CL N IR

−

 
 

+ 
 =
 
 
 
 

  

Construct matrix ( , ( 1) )E N L L L IR+ + +   

Construct matrix ( )D N L+   

Construct the pseudoinverse of matrix E , the matrix
# ( ( 1) , )E L L IR N L+ + +  

Construct the matrix 
#( ( 1) ) ( ( 1) , )* ( )X L L IR E L L IR N L D N L+ + = + + + +  

Construct matrices 
1( , ), 2( , ),

1 2

CK IR L M L CK IR L M L

CK CK CK

+ + + +

= +
  

The solution is matrix ( , )CK IR L M L+ +  

End Else 

Begin 

Construct matrix ( , )OL N M   

Construct matrix ( , ( 1) )F N L L L M+ + +   

Construct matrix ( )D N L+   

Construct the pseudoinverse of matrix F , the matrix 
# ( ( 1) , )F L L M N L+ + +  

Construct the matrix 
#( ( 1) ) ( ( 1) , )* ( )X L L M F L L IM N L D N L+ + = + + + +  

Construct matrices 1( , ), 2( , ), 1 2OK IR L M L OK IR L M L OK OK OK+ + + + = +  

The solution is matrix ( , )OK IR L M L+ +  

End 

Algorithm self-check 
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Form the extended matrices  

( , ), ( , ), ( , ), min( , )AE N L N L BE N L IR L CE M L N L L IC IO+ + + + + + =   

IF IC<IO find the coefficients 2( )ALFA N L+  of the characteristic polynomial of matrix 

* *AE BE CK CE+   

IF IC>IO find the coefficients 2( )ALFA N L+  of the characteristic polynomial of 

matrix * *AE BE OK CE+  

IF IC=IO, you can choose either CK  or OK  

Compare 2( )ALFA N L+ with the target coefficients ( )BETA N L+ , they must be equal 

Calculate the references: 
#

,1 ,(0)r r m steadyw TR y= where 
#

,(0)r mTR  is the pseudoinverse of 

,(0)r mTR  and: 

1 1 1 2 1 1

1 1,1

0

,

, ,

,

1
(0) ' [ .. ( ) ( ) ] '

' 0 , '
0

,

n n

e n e e e

e

N r

m N m L

L r

TR C I A A B
a

n N L

B
C C B

m M r IR

  − −

−= + + +

= +

 
 = =   

 

= =

 

The " "e subscript stands for “extended system” (system including the compensator). The dynamic 

dimensions of the matrices used by the program are: 

( , ), ( , ), ( , ), ( ),

( , ), ( , ),

( , ), 1( , ),

1( , ), 2( , ),

2( ), ( , ), ( , ),

( , ), ( , * ), ( , * ),

( ), ( ), ( , ), ( , ( 1) ),

A N N B N IR C M N BETA N L

AE N L N L BE N L IR L

CE M L N L BE N L M L

CE N L N L A N L N L

ALFA N L ACK IR N BAKC N N

Y N N QC N N IR QO N N M

T N G N R N N E N L L L IR

+

+ + + +

+ + + +

+ + + +

+

+ + +

( ( 1) , ),

( , ( 1) ), ( ( 1) , ),

( , ), 1( , ),

2( , ), ( , ),

1( , ), 2( , ),

( , ), ( ),

(max{ ( 1) , ( 1) }), ( ), ( ),

( , ),

PSE L L IR N L

F N L L L IM PSF L L M N L

P N N CK IR L M L

CK IR L M L CK IR L M L

OK IR L M L OK IR L M L

OK IR L M L D N L

X L L IR L L M H IR ETA M

CL N IR O

+ + +

+ + + + + +

+ +

+ + + +

+ + + +

+ + +

+ + + +

( , ), 1( , ),

( * ), ( , )

L N M AK IR M

AS IR M AK IR M
 

The program can be downloaded from link [5]. 

6. A practical example – a system with 3 inputs and 2 outputs 

Consider the system described by the equations: 

x Ax Bu

y Cx

•

= +

=

  (6.1) 

where , ,A B C  are time invariant: 

http://www.rria.ici.ro/
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0 1 0 0 0 0 0 0

0 0 1 0 0 1 0 0
1 0 0 0 0

, , . 5, 3, 20 0 0 0 0 0 1 0
0 0 0 1 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1

A B C N IR M

   
   
     
   = = = = = = 
     
   
      

  (6.2) 

The controllability index is found to be 1IC =  and the observability index is found to be 

2IO =  so, min( , ) 1L IC IO= =  .Therefore, the number of compensator integrator blocks is one. 

The rank of the extended system is 6N L+ =  so we have to allocate six poles for the extended 

system. We do that by specifying a characteristic polynomial of order six: 
6 5 4 3 2( ) 2 4 3 5 2

lAX s s s s s s s= − + + − − +  . We input the coefficients of the desired characteristic 

polynomial in the form of the vector ( ) [ 2,4,1, 3, 5,2]BETA N L+ = − − − . The program will furnish 

the feedback matrix:

7.44 2.66 0.02

0.85 8.88 4.23
( , )

12.14 1.06 14.6

2.58 15.7 2

CK IR L M L

− − 
 

− −
 + + =
 
 
− − − 

 (6.3) 

The dynamic compensator consists of: 12 amplifiers (see the elements of matrix CK ), 4 

summing units with 4 inputs each (see diagram) and 1 integrator. Note that the compensated system 

has acquired and extra input, 4u   and an extra output, 3y . If the values for the amplifiers are 

inconvenient, it is very easy to generate another matrix CK by generating a new pair of random 

vectors ( )ETA N , ( )H IR . 

 

 

Figure 1. The diagram of the compensated system 

 

We are left with the task of computing the references for the compensator: 1 2 3, ,w w w . We 

will give the general algorithm for a very simple calculation of the compensator references. The 

dynamics of the compensated system are described by: 
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,1 ,1,1

,1,1 ,1
, , ,

__ _

, , , , , ,

0 0 0
, , , , ,

0 0 0 0

, , ,

l ll

l e e e e

e e e

mn r
n l n l m l

e e e e e e

l n l l l r l l l n l l

x A x B u

y C x

yx uA B C
A B C x y u

I I yx u

l L m M r IR n N

•

= +

=

         
    = = = = = =     
              

= = = =

 (6.4) 

The " "e subscript stands for “extended system” (system including the compensator). The 

above system splits into two separate systems: 

x Ax Bu

y Cx

•

= +

=
  (6.5) 

_

,

_

,

l l

l l

x I u

y I x

•

−

=

=

  (6.6) 

According to Theorem II Brasch-Pearson, there exists K  such that the extended system 

obtained by using the output feedback l l lu Ky w= +  will have the dynamics described by: 

( )e e e e e e e

e e e

x A B KC x B w

y C x

•

= + +

=
 (6.7) 

and the matrix 
1

e e e eA A B KC= + will have the desired distribution of the eigenvalues and 

,1

,10

r

e

l

w
w

 
=  
 

 

1

e e e e e

e e e

x A x B w

y C x

•

= +

=
 (6.8) 

This means that: 

1 1

, ,1( ) ( ) ( ) ( )* ( )e e n l e e m l r l r lY s C sI A B W s T s W s−

+ + + += − =   (6.9) 

Because 
,1

,1

( )
( )

0

r

l

W s
W s

 
=  
 

 and 
,1

_

,1

( )
( )

( )

m

l

Y s
Y s

Y s

 
 =
 
 

we can write: 

,1 , ,1( ) ( )* ( )m m r rY s TR s W s=  (6.10) 

The steady state of the outputs is: 

, ,1 ,
0 0

( ) ( ) lim ( ) (0) lim ( ) (0)steady m r r m r steady
s s

Y s Y sY s TR sW s TR W
→ →

=  = = =  (6.11) 

It follows that: 

(0)steadyy TR w=    (6.12) 

So, the desired vector of constant references is:  

http://www.rria.ici.ro/
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#

,1 ,(0)r r m steadyw TR y=   (6.13) 

Now, we remember that: 

1 1 2 2 1

1 1 1

1
( ) [( .... ) .. ( ) ]

( )

n n n n

n n

A

sI A s s I s A A
X s

  − − − − −

− −− = + + + + + + +   (6.14) 

It follows that: 

1 1 1 1 1 2 1 1

, 0 1, 1,1

0,

1
( ) | [ .. ( ) ( ) ]n n

n l n l e s e n e e e

e

sI A I A A
a

 − − −

+ + = −− = + + +   (6.15) 

1 1 1 2 1 1

1, 1,1

0,

1
(0) [ .. ( ) ( ) ]n n

e e n e e e e

e

T C I A A B
a

  − −

−= + + +   (6.16) 

1 1 1 2 1 1

1, 1,1

0,

,

, ,

,

1
(0) ' [ .. ( ) ( ) ] '

' 0 , ' ,
0

n n

e n e e e

e

N r

m N m L

L r

TR C I A A B
a

B
C C B n N L

  − −

−= + + +

 
 = = = +  

   (6.17) 

This way, the algorithm avoids the calculation of the transfer matrix ( )T s  altogether. The 

program furnishes the matrix 
1

eA  (denoted as 2( , )A N L N L+ +  in the program) and the 

coefficients 
1

,i e  of the characteristic polynomial 1 ( )
eA

X s  , denoted as 2( )ALFA N L+  in the 

program. The algorithm has the added strength that if the desired steady outputs steadyy vary, then 

the only thing needed in re-calculating the references is to re-calculate the product 
#

,(0)r m steadyTR y , 

#

,(0)r mTR being time invariable. The author is grateful for the help of Sreeganesh and Sreegurunath 

Siva in debugging the program. The author also thanks the anonymous referee for the clarifications 

added to the original text.  
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