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Abstract: This study describes a new method for gripping and sensing a physical object (or material) with a 

prosthetic arm that uses haptic technologies, kinaesthetic communication, and machine learning. Haptic 

technology is a method of determining if an object is firm or soft as if it were gripped by a human and 

determining how much gripping force the object can withstand without crushing it. The bending moment and 

gripping force are measured using a flex sensor in human fingers and a pressure sensor applied by the tip of 

the human fingers. Three different types of objects (soft sponge, hard sponge, and plastic) are studied and 

tested in this work by pressing them with varying gripping pressures (soft, firm, and firmer). In addition, a 

model (Haptic Intelligence Recorder arm) is proposed that can anticipate the object type and gripping force 

based on the recorded intelligence data. The major goal is to educate our prosthetic hand to be able to grip 

various items with varying finger pressures, much like we can do naturally. Finally, a glove is created that is 

tailored to the intelligence arm's ability to anticipate grabbing items. 

Keywords: Haptic technology, intelligent recorder arm, flex sensor, pressure sensor, machine learning. 

1. Introduction 

The science of using touch (tactile sense) to control and interact with computer programs is 

known as haptics. Haptical Technology, often known as haptics, is a type of feedback that uses the 

sense of touch to deliver forces, vibrations, and motion to the user. It can primarily sense and 

modify computer-generated worlds through touch. In the topic of haptics, there is currently a lot of 

study going on. Sensing items with robotic hands is doable using current feedback technology. A 

robotic arm's inability to anticipate the firmness of a substance when grasping it can result in the 

mutilation of delicate things by applying too much pressure. Furthermore, if the robotic hand is 

much larger than the thing it was intended to grip, the new object may be crushed under its weight, 

or the motors controlling the finger movements may be destroyed as a result of the stalled position. 

In the event of smaller things, the hand will not be able to secure a firm grip. These can cause the 

apparatus to be damaged or shorten its or the product's life. A Haptic Intelligence Arm is fitted with 

a flex sensor or bend sensor that measures the amount of deflection or bending to overcome all 

these problems. 

In this paper, an artificial arm (Haptic Intelligence Recorder arm) is explored and trained to 

grip various items with varying finger pressures as if it were a person. Three different types of 

objects (such as a soft sponge, a hard sponge, and a plastic one) are considered and pressed on by 

different gripping forces (soft, firm, and firmer gripping), and the data is collected using sensors 

and fed into various machine learning algorithms to predict the gripping and bending forces applied 

by the specific object. Using the bend of the fingers as the independent variable and the force 

exerted as the dependent variable, the characteristics of the obtained data indicate a zone beyond 

which a material can be destroyed due to excessive application of pressure. For training and testing, 

a dataset is prepared and split 70:30. The major goal of this paper is to forecast how to grab 

different objects using different gripping strengths and finger bending. Flex sensors are important 

because the robotic arm cannot anticipate the material's stiffness, causing fragile objects to be 

mangled when too much pressure is applied. A gripping mechanism embedded within the usage of 

computer vision or dimension parameters that are fed into the system to hold on to specific items 
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can be used to forecast the object in this study. Finally, several machine learning methods are used 

to assess its performance. As a result, the findings are compared within the datasets we generated, 

and all of them attain over 99 percent accuracy. A glove is being developed that will allow the 

haptic intelligence arm to anticipate grabbing objects. 

This section introduces our research work and its goal. The remainder of the paper is 

structured as follows: The related work is discussed in part 2, and the dataset preparation is 

described in section 3, which is divided into two subsections. The first part of section 3 explains 

how the dataset was created by the robotic arm (Haptic intelligence recorder arm) to predict how to 

grip the object, and the second part explains how the dataset was analyzed by comparing the 

performance of various standard machine learning algorithms on the dataset. In section 4, we 

illustrate how a machine learning algorithm may anticipate an item, and in section 5, we have a 

critical debate to evaluate the performance of our work, followed by a conclusion in section 6. 

2. Related work 

Fingertip forces are used in a variety of everyday activities. The robotic arm's grip strength 

(the ability to exert a fingertip force) physically interacts with the surroundings, which is linked to 

improved quality of life (Weiner et al., 2018). Intelligent physical interactions with the 

environment are taking place by combining grip strength with a sophisticated touch sense (Cheng 

et al., 2017; Raspopovic 2014). Nonetheless, if the tactile sense is absent despite visual guidance, 

the work will be tough. To do this, technologies that study or develop tactile sensors must be used 

to duplicate the feeling of touch in artificial systems such as robotic and prosthetic hands (Quigley 

et al., 2014; Saudabayev et al., 2015; Jamali et al., 2015).  For the control of artificial hands, force 

sensing is critical in comprehending the interaction between a mechanical hand and its environment. 

Joint angle sensors offer information about the shape of a grabbed object, temperature sensors 

measure the object's thermal conductivity, accelerometers detect slide, and distance sensors detect 

the presence of an object (Wottawa et al., 2016; McKinley et al., 2015). 

Commercially accessible sensors sense the electronics and electric connections of the 

complicated mechanical structure of an artificial hand and its fingers when robotic and prosthetic 

hands are integrated into multi-modal sensor technologies (Yun et al., 2017; Polygerinos et al., 

2015). Commercially available digital three-axis Hall effect sensors are used by the authors to 

measure forces through the displacement of a magnet embedded in flexible material (Bianchi et al., 

2018). The authors (Conti et al., 2016) used a modular sensor to monitor the elastic deformation of 

the finger structure caused by applied forces.  Natural tactile force sensors are created using a small 

barometric pressure sensor (Kang et al. 2019). For the artificial intelligence system for health 

monitor application and control, various sorts of sensor operations are shown (Wu et al., 2019). 

Although much effort has gone into developing a prosthetic arm that detects object by analyzing 

the image of the object (Zhao et al., 2016; Wang et al., 2021). However, the intelligent arm and 

sensor application are integrated here, and the intelligent arm detects the object using the sensor 

application. To predict the object, the proposed Haptic Intelligent Arm, flex sensor, and pressure 

sensor are integrated. 

3. Dataset preparation 

3.1. Data collection 

We created an innovative device to collect data and generate a dataset linked to haptic 

technology gripping of various things. The prototype's major goal is to identify objects with 

varying gripping forces and finger bending movements, as well as vice versa, so it can quickly 

determine what type of object it is when gripping force is applied. There are several limits in 

sensing items using haptic technology of a robot until now. However, this proposed prototype 

(Haptic Intelligence Recorder arm) could be used in robots to overcome these obstacles. The 

prototype consists of a heavy-duty glove with two types of sensors for fitting into the human arm. 

http://www.rria.ici.ro/
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Each finger has a four-inch flex sensor attached to the back, which is used to measure the 

deflection or bending of the fingers. The resistance in the sensors is related to the angle at which 

the finger bends. Flex sensors have a resistance range of 14 to 40 kohm, but this varies from sensor 

to sensor due to inconsistency. The force of repulsion applied by the human arm to the piezo-

electric force is recorded using fingertip sensors, whose resistance is inversely proportional to the 

force applied. Their resistance ranges from 1 Mohm to 16 kohm, but it is highly variable. Because 

piezo-electric force sensors are flat and can readily retain items, they are utilized on the fingertips 

instead of transducers. All the sensors are connected to an Arduino mega board through a potential 

divider circuit, which converts resistance changes into voltage changes that the Arduino board can 

read. The data from the sensors is read using a very basic code on the Arduino board, and the 

results are recorded in a spreadsheet using Tera Term software.  We intend to apply reinforcement 

learning to test the feasibility of the concept in the first step. To do so, we took readings from flex 

sensors and force sensors attached to objects of varying tensile strength, as well as categorizing the 

pressure we applied into three categories: mild, hard, and firmer. As illustrated in Figures 1a and 1b, 

the flex sensors are located on the backside of the robot arm, while the pressure sensors are located 

on the frontside. 

 

 

Figure 1a. Pictorial representation of the Robot Arm (Back side) 

 

 

 

Figure 1b. Graphic representation of the Robot Arm (Front side) 
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The flowchart of the data collection is shown in Figure 2. 

 

Figure 2. Flowchart of the prototype implementation 

3.2. Data analysis 

We built a dataset for three various sorts of objects: 'soft sponge,' 'hard sponge,' and 'harder 

plastic,' all of which have varied gripping forces such as soft, firm, and firmer. Various objects and 

gripping forces are divided into nine categories: soft-soft, soft-hard, soft-harder, hard-soft, hard-

hard, hard-harder, and harder-soft, harder-hard, harder-harder. We looked at a total of 15352 

samples in the dataset, which had 10 features and 9 categories. There is a big difference between 

soft, firm, and firmer grip when considering flex sensors with soft ball. There is a significant 

difference in grip between soft and firm for hard balls, but not between hard and harder. Finally, 

there is no discernible difference between soft, firm, and firmer grips for the harder ball. Similarly, 

there is no substantial difference (where the pressure reading is practically the same) between soft, 

firm, and firmer grip when using a pressure sensor with a soft ball. There is a difference in pressure 

value between soft and hard grip for hard balls, but not between hard and harder grip. Finally, there 

is a substantial difference between soft, firm, and firmer grip for harder balls.  The goal of this data 

analysis is to figure out how the flex sensor resistivity rises when the sensor bends further, reducing 

current flow through the sensor. When too much pressure is applied, however, the resistivity of the 

pressure sensor drops, causing current flow through the sensor to increase. The hypothesis is  

tested using the dataset, although some results vary due to factors such as circuit current loss, 

analog sensors that are not properly calibrated, and the varying strength of the human grasp during 

the experiment. 

http://www.rria.ici.ro/
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The dataset we developed has 15352 samples with 10 features specified in the previous 

sections and 9 categories. Figure 3 depicts the categorical distribution of samples across the dataset, 

with the 'HARD-HARD' category having the most samples at 2217 and the 'HARD-SOFT' 

category having the fewest at 1285. 

 

Figure 3. Distribution of samples taken for all the categories 

 

The figures below illustrate some exploratory data analysis (EDA) on the dataset we created 

to gain a sense of the distribution of the features' values. 

 

Figure 4. Distribution of range of features’ values in the dataset 

 

Figure 5. Categorical data distribution of the features’ values in the dataset 
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4. Classification and prediction using machine learning algorithm 

The dataset we developed is then put to the test with six well-known machine learning 

methods (Huang et al., 2003; Williams et al., 2006) that are discussed in the following sections. 

The dataset was split 70:30 into a train and test set. We tested the effectiveness and accuracy of all 

six well-known machine learning methods on the dataset. We used ‘Logistic Regression’ (LR) 

(Osisanwo et al., 2017), ‘Linear Discriminant Analysis’ (LDA), ‘K-nearest neighbors’ (KNN) (Loh 

et al., 2011), ‘Decision Tree’ (DT), ‘Naive Bayes’ (NB), and ‘Support Vector Machine’ (SVM) 

(Breiman et al., 1984; Zhang et al., 2005; Schein et al., 2007) on our dataset with 10-k cross-

validation techniques and achieved 99% to 100% accuracy.  

The final accuracy of the algorithms is shown in Table 1. Table 2 illustrates the dataset's 

confusion matrix using the LR technique. On the dataset, Table 3 displays the precision and recall 

for the same LR method. NB performs flawlessly in the classification job, demonstrating the range 

of variance present in the dataset we created. The data is well recorded and evenly distributed over 

the dataset employing haptic technology-based sensors. The dataset is publicly available at 

(GitHub, n.d.) for further research.  

 

Table 1. Various classification models and their accuracy 

Algorithms LR LDA KNN DT NB SVM 

Accuracy (%) 99.6 99.8 99.9 99.7 100 99.9 

 

 

Table 2. Confusion matrix for LR algorithm 
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Table 3 shows the table of Sensitivity (Recall) and Precision for the Logistic Regression 

(LR) algorithm, and Table-2 shows the confusion matrix. It tends to be NOT CLEAR, REPHRASE 

PLEASE! comparative information as given in Table - 2 and Table - 3 for other 5 algorithms 

('Linear Discriminant Analysis' (LDA), 'K-closest neighbors' (KNN), 'Choice Tree' (DT), 

'Credulous Bayes' (NB), and 'Backing Vector Machine' (SVM)). 

Table 3. Precision and recall for the LR algorithm 

Category Precision Recall 

SOFT_SOFT 0.99 1.00 

SOFT_HARDER 1.00 1.00 

SOFT_HARD 1.00 1.00 

HARD_SOFT 1.00 1.00 

HARD_HARDER 0.99 1.00 

HARD_HARD 1.00 0.98 

HARDER_SOFT 1.00 1.00 

HARDER_HARDER 0.98 1.00 

HARDER_HARD 1.00 1.00 

5. Design and discussion of prototype 

 We created a dexterous prosthetic arm with a rounded shape and profile that provides the 

hand a natural appearance, especially when covered with the lifelike silicone skins illustrated in 

Figure 6. The robotic hand can perform daily tasks like eating, carrying bags, opening doors, 

turning on lights, and typing. The dexterous control feedback system for grabbing items is created 

by placing flex sensors on the fingers inside the palm. The pressure force sensor meets the object as 

the fingers grab it with full dexterity, and after receiving data, the servo motor begins its operation, 

and the feedback loop begins.  The servo motor continues to work after detecting the object until 

the pressure sensor reaches the optimal level. If the object begins to flex, the feedback is delivered 

to stop the servo motor's grabbing mechanism and decides to position the object in the desired 

location. Figure 7 shows a block diagram of the prosthetic arm. 

 

Figure 6. Design of prosthetic arm 
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Figure 7. Block diagram representation of the function of arm 

The hand glove for the prosthetic arm (shown in Figure 8) is already designed and used for 

handling real-life objects. The force sensor exerts pressure to the object to keep it firmly in place, 

and the flex sensor provides the appropriate degree of finger flexion while holding the object (see 

Figure 8). Objects used in daily life such as a marker pen, television remote, duster, water bottle, 

and smartphone are called holding objects. We've already generated a gripping dataset for four 

distinct types of objects, which we may use for future projects. 

 

 

Figure 8. Prosthetic Arm Holding Marker Pen Showing Pressure and Flexion Values 

 

6. Conclusion 

By tracking the recorded data and applying various machine learning methods for prediction, 

we can anticipate the physical object type and the corresponding gripping in this study. An 

alternate solution to this challenge is to give the robotic arm a sense of touch instead of fingers so 

that it can learn to feel the object and calculate/predict its size and rigidity. In the future, the same 

approach might be applied to a prosthetic hand that grips an object with varying degrees of pressure 

to determine how much gripping force to apply. Furthermore, neural networking allows machine 

learning to recognize and classify distinct objects.  
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