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Abstract: In this paper, a fuzzy sliding mode controller (FSMC) with adaptive gain is proposed for a class of 

MIMO nonlinear systems. The coupled system can be divided into two different subsystems, each of which 

can be separated into two sliding surfaces created by the state variables. The integration of these two sliding 

surfaces requires the introduction of an intermediary variable. In order to ensure that the control system is 

stable, the adaptive gain is derived using the Lyapunov method. The synthesized fuzzy sliding mode control 

with adaptive gain is applied to an inverted pendulum to illustrate the suggested control technique. The 

performance and robustness of the proposed controller are compared, terms of time, with those of provided 

by fuzzy sliding mode controller. This comparison reveals the superiority of the proposed method over the 

fuzzy sliding mode controller, in terms of the system stabilization and tracking of the trajectory. 
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1. Introduction  

In general, designing a controller for a nonlinear system is a difficult task even when the 

dynamic model of the system is available. It becomes also more difficult especially when the 

dynamic model is unknown or poorly described. Moreover, the progress of research over the last 

two decades in synthetic methods has given rise to systematic approaches, providing thus high 

effective nonlinear control laws. Among them, it can be mentioned the input-output linearization 

approach based control analysis as well as the synthesis method for a large class of non-linear 

systems (Nayfeh, 2008).  

However, these approaches can only be used for nonlinear systems where the dynamic 

model is well-known. To overcome this drawback, several adaptive control approaches have been 

introduced (Fradkov et al., 2013; Kokotović & Arcak, 2001). Among them, fuzzy adaptive control 

has been a considerable success (Yin et al., 2015; Sun et al., 2018). It should be noted that the main 

issue appeared in this approach is the possibility of dividing by zero, leading therefore to undefined 

control law. Accordingly, the inverse of the control gain is directly estimated to avoid this problem. 

In most fuzzy adaptive control approaches, a robustification step based sliding mode control law 

should be introduced (Sui & Zhao, 2022; Zhang et al., 2021). 

Fuzzy system-based adaptive control methodologies have engaged great interest in practical 

control engineering and are emerging as potential strategies for controlling highly uncertain and 

nonlinear dynamical systems. In the last two decades, a number of adaptive fuzzy control schemes 

have been developed based on the universal approximation theorem (Van Kien et al., 2019; Sun et 

al., 2020) for a class of single-input single-output (SISO) nonlinear uncertain systems (Younsi et al., 

2017; Hung et al., 2007). The multi-input multi-output (MIMO) nonlinear uncertain systems are 

investigated in (Yoshimura, 2015; Arefi & Jahed-Motlagh, 2013). The Lyapunov synthesis method 

is used to analyze the stability of such schemes (Cao et al., 2016). Direct and indirect schemes are 

conceptually two different approaches used to design a fuzzy adaptive control system in order to 

achieve control objectives. 

In this paper, it is demonstrated that a significant class of fourth-order systems can be 

controlled without increasing the fuzzy rules, but by decreasing them to the minimum. The fuzzy 
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controller can be constructed by human experts or by following some rules based on techniques 

derived in specialized literature (Lin et al., 2006; Ullah et al., 2015). The controller proposed in this 

paper transforms into a two-level sliding-mode controller for a specific class of fourth-order 

nonlinear systems if no language rules are provided. 

The structure of this paper is as follows: Section 2 defines the terms and introduces the 

classic SMC design approach. Section 3 presents, the approach of designing fuzzy sliding mode 

control of coupled nonlinear systems that may be divided into two subsystems. Decoupled fuzzy 

sliding mode control with adaptive gain and stability analysis is shown in Section 4. In Section 5, 

the proposed controller is used to control highly nonlinear system inverted pendulum. Conclusions 

are finally summarized in the last section. 

2. Sliding mode control  

Considering a nonlinear system described by the following state representation (Ullah et al., 

2015; Delavari et al., 2010): 
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where: 1 2, , ,
T

nX x x xt t t t  is the state vector, ,f X t  and ,b X t  are nonlinear 

functions with ( ), 0b X t  , u t  is the control, d t  is the disturbance considered to be 

bounded: ( )d t D . 

The sliding surface is given by: 
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where 0ic   , 1, , 1i n  are positive constants. 

If a Lyapunov function of the following form is chosen: 

( ) ( )21
, ,

2
V X t S X t=            (3) 

according to Lyapunov theorem, if V  is negative, the state trajectory will be attracted to the sliding 

surface and commute around it to the point of equilibrium. 

The derivative of the sliding surface is given by: 

( ) ( ) ( ) ( ) ( ) ( )
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Multiplying equation (4) by S , it is obtained: 
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The sliding mode control law is as follows (Amieur et al., 2014; Delavari et al., 2010): 

( ) ( ) ( )( )
( )

, ,
,

eq

D
u t u t KSgn S X t K

b X t
= −         (6) 
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where:  K is known control gain and  ( )
( )
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 is the equivalent control. 

By replacing ( )u t  with its expression (6), the relation (5) becomes:  

( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

, , , , , ,

, , , , 0

V X t S X t S X t S X t KSgn S X t b X t d t

K S X t b X t d t D S X t d t S X t

 = = − + 

 = − +  − +  

   (7) 

( ) ( ) ( ), , , 0V X t S X t S X t=            (8) 

By applying the control equation (6), it results an unwanted oscillations (chattering) on the 

steady-state responses. The solution consists in replacing the function ( ).Sgn  by the function 

( ).Sat  to avoid chattering problem and the temporal responses will be smoother: 

( ) ( )
( )
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,
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,
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S X t D
u t u t KSat K
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The control equation (9) can be depicted later, in Figure 3, and the saturation function is 

defined by: 

( )
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,  : is the boundary layer of 

( ),S X t .  

3. Fuzzy sliding mode control  

The relation between the sliding surface ( ),  S X t  and the control ( )u t  can be exploited to 

determine the basis of rules of a fuzzy controller allowing the asymptotic stability of the system 

(Lo & Kuo, 1998).  

Suppose that the fuzzy controller is constructed from the following IF-THEN rules: 

1R : If S   is NB   Then u  is BIGGER 

2R : If S  is NM  Then u   is BIG 

3R : If S  is  ZR  Then  u   is  MEDIUM               (10) 

4R : If S  is  PM  Then u   is  SMALL 

5R : If S  is  PB   Then u   is  SMALLER 

 

where NB is negative big, NM is negative medium, ZR is zero, PM is positive medium, and PB is 

positive big. NB, NM, ..., SMALL, SMALLER are labels of fuzzy sets and their corresponding 

membership functions are depicted in Figure 1 and Figure 2, respectively (Lin et al., 2006; Lo & 

Kuo, 1998). 
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By using the sup–min compositional rule of inference:  
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It can be further simplified by supposing that xF  is a fuzzy singleton, i.e., only with its 
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The crisp output u  is obtained by the center-of-area defuzzifier: 
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The result of the defuzzified output u  for a fuzzy input S , has the following form: 

FSMC eq

S
u u u KSat

 
= = −  

 
               (15) 

 

The equation (15) is depicted in Figure 3.  
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Figure 1. Membership functions for input S 
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Figure 3. Result of defuzzification of a fuzzy controller u 

4. Decoupled fuzzy sliding mode control  

Consider a class of coupling nonlinear systems which can be divided into two subsystems as 

(Lin et al., 2006; Lo & Kuo, 1998):  

( )

( )

1 2

2 1 1 1

3 4

4 2 2 2

( ) ( )
:

( ) ( , ) ( , ) ( ) ( )

( ) ( )
:

( ) ( , ) ( , ) ( ) ( )

x t x t
A

x t f X t b X t u t d t

x t x t
B

x t f X t b X t u t d t

 =


= + +


=
 = + +

             (16) 

where ( ) ( ) ( ) ( ) ( )1 2 3 4, , ,
T

X t x t x t x t x t=     is the state vector, ( )1 ,f X t , ( )2 ,f X t , ( )1 ,b X t  

and ( )2 ,b X t  are nonlinear functions with ( ) 11 , 0b X t b  , ( ) 22 , 0b X t b  , respectively, 

u t  is the control and 1d t  and  2d t  are the disturbances supposed to be bounded: 

( ) , 1,2i id t D i =
   

Two sliding surfaces, namely ( )1 ,S X t  for the subsystem A and ( )2 ,S X t  for the 

subsystem B, are defined: 

( ) ( ) ( )1 1 1 2,S X t c x t x t= +
                 (17) 

( ) ( ) ( )2 2 3 4,S X t c x t x t= +
                 (18) 

where  1c  and 2c   are positive constants. 

From the sliding mode theory presented in the previous section, two control laws can be 

chosen: ( )1u t  for the subsystem A and ( )2u t  for the subsystem B, in the following form (Lin et 

al., 2006; Lo & Kuo, 1998): 
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where 1K  is the control gain for ( )1u t  and 1  is the boundary layer of  ( ) ( )1 1, ,S X t b X t .  

( ) ( ) ( ) ( )( )2 2 2 2 2 2, ,equ t u t K Sat S X t b X t= −                (20) 
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where 2K  is the control gain for ( )2u t  and 2  is the boundary layer of ( ) ( )2 2, ,S X t b X t .  

Assuming that the essential objective is to stabilize the subsystem A, it is reasonable to 

consider the information coming from the subsystem B as secondary, and this secondary 

information must be taken into account by the subsystem A. Therefore, an intermediate variable z  

which represents this secondary information is incorporated into ( )1 ,S X t . The surface ( )1 ,S X t  

takes the shape ( )( ) ( )1 1 2c x t z x t− + , which means that the main goal is changed to ( )1x t z= , 

( )2 0x t = , or z  is a function of ( )2 ,S X t . 

The expression ( )1 ,S X t  and ( )2 ,S X t  can be written as: 

( ) ( )( ) ( )1 1 1 2,S X t c x t z x t= − +                 (21) 

( ) ( ) ( )2 2 3 4,S X t c x t x t= +                   (22) 

The control law becomes:  
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The value of the state z  can be limited by posing 

, 0 1U Uz z z                     (25) 

where Uz  is the maximum value of z .  

The variable z  can be defined by:   

( ) ( )2 2, ,
, 1 0 1U U

z z

S X t S X t
z Sat z and z

 
=    

  
            (26) 

where z  is the boundary layer of ( )2 ,S X t  which smooths the control and maintains the state of 

the system in this band. From equation (22), if ( )2 , 0S X t   then 0z , if ( )2 , 0S X t →  then 

0z , ( )1 0x t →  and ( )1 , 0S X t →  so the purpose of the control can be completed (Delavari et 

al., 2010). 

4.1. Fuzzy sliding mode control with adaptive gain  

In the previous section it has been assumed that the gain K  of the sliding mode control can 

be determined. However, in practice, there is no method for calculating this gain. To solve this 

problem, an adaptive control gain is used in this subsection. 
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Consider the following control law:    

( ) ( ) ( )eq nu t u t u t= +                    (27) 

The equivalent control equ  can be obtained from the time derivative of the surface  1 0S . 

( ) ( )( ) ( )1 1 1 2,S X t c x t z x t= − +                 (28) 

( ) ( )( ) ( ) ( ) ( )1 1 2 1 1, , ,S X t c x t z f X t b X t u t= − + +              (29) 

( )
( ) ( )
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1 2 1 1*
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,
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c x t c z f X t
u t

b X t

− + −
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The variable z  is not differentiable and z  cannot be obtained. For this reason, the optimal 

equivalent control law ( )*

equ t  is approached by the equivalent control ( )equ t   given by: 

( )
( )1 2 1

1

( , )

( , )
eq

c x t f X t
u t

b X t

− −
=                  (31) 

and ( )k t  is given by:  

( ) ( ) ( )*

eq eqk t u t u t= −   with  ( )0 k t K                 (32) 

The uncertainty K  limit is a positive constant. However, this uncertainty limit cannot be 

measured in practice (Amieur et al, 2014). 

( )K̂ t  is the estimated value of K . The estimation error is considered as follows: 

ˆK K Kt t                     (33) 

The discontinuous control ( )nu t  whose purpose is to verify the conditions of attractiveness, 

is an adaptive sliding mode control term introduced to compensate the difference between the 

optimal equivalent control ( )*

equ t  and the equivalent control ( )equ t .   

( ) ( ) ( ) ( )( )1 1
ˆ , ,nu t K t Sign S X t b X t= −                (34) 

To ensure the objectives of the control, the following adaptation law is taken into 

consideration: 

( ) ( ) ( ) ( )1 1
ˆ , ,K t K t S X t b X t= − =      where  0               (35) 

4.2. Stability analysis  

In order to demonstrate the stability of the system, the following Lyapunov candidate 

function is considered: 

( ) ( ) ( )2 2

1

1 1
, ,

2 2
V X t S X t K t


= +                 (36) 

whose time derivative is:  

( ) ( ) ( ) ( ) ( )1 1

1
, , ,V X t S X t S X t K t K t


= +               (37) 

From (29) and (33), it is obtained: 
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( ) ( ) ( ) ( ) ( ) ( )( ) ( )( ) ( )1 1 2 1 1 1

1 ˆ, , , ,V X t S X t c x t c z f X t b X t u t K K t K t
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By replacing ( )u t  with its expression (27) and by using the adaptation law (35), the relation 

(38) becomes:  
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From (30), it is obtained:  
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ˆ, , , , ,eq eq nV X t S X t b X t u t u t u t K K t S X t b X t= − + − −       (40) 

From (32) and (34), it is obtained: 
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( ) ( ) ( ) ( )( ) ( ) ( ) ( )1 1 1 1 1 1
ˆ ˆ, , , , , ,S X t b X t KSign S X t b X t K t S X t b X t=           (42) 

( ) ( ) ( ) ( ) ( ) ( )1 1 1 1, , , , ,V X t S X t b X t k t K S X t b X t= −             (43) 

( ), 0V X t  . 

5. Simulation and results  

To demonstrate the effectiveness of the method inverted pendulum was used to ensure the 

control. The system consists of a movable cart in translation motion which supports a pendulum 

with free rotation, as shown in Figure 4.  

 

Figure 4. Structure of an inverted pendulum system 

The motion can be described by the following differential equations (Jafary & Tabatabaei, 

2022): 
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where ( ) ( )1x t t= , ( ) ( )2x t t= , ( ) ( )3x t x t= , ( ) ( )4x t x t= , ( )u t  is the force which moves the 

)(tu

 


 

)(tx
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cart, ( )x t  is the position of the cart and  ( )t  is the angle of the pole. 

0.1pm kg , 1cm kg , t c pm m m , 0.5L m ,  2
9.81 /g m s . 

The simulation results are illustrated in Figures 5-16,  for the following conditions: the  

initial conditions  (0) 1.0,0, 1.0,0
T

x = − − , the external disturbance ( ) ( ) ( )1 2
0.5sind t d t t= =  

and for a controller by fuzzy sliding mode with adaptive gain whose parameters are the 

following: 1 5c , 2 0.5c , 0.1 , ( )1 8K = , 1 5 , 8.5812z , 0.9425Uz  

5.1. Tracking rectangular signal reference position 

Figures 5-8 illustrate the results obtained for tracking the following desired state vector:   

( ) 0d t , ( ) 0d t ,
1

1
( )dx t

−


= 


   
if

if
  

15sec 30sect

else

 
 and ( ) 0dx t  

 

Figure 5. Position evolution of the cart ( )x t  and ( )dx t  

 

Figure 6. Evolution of the adaptive gain  

 

Figure 7. Control signals by ( )u t  FSMC and ( )u t FSMC adaptive gain  
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Figure 8. Evolution of error angle pendulum ( ) ( )dt t  −   and variable z  

5.2. Tracking sinusoidal signal reference position  

 Figures 9-12 illustrate the results obtained for tracking the following desired state vector: 

( ) 0d t , ( ) 0d t , ( ) sin
30

dx t t


 and ( ) cos
30 30

dx t t
 

 

 

Figure 9. Position evolution of the cart ( )x t  and ( )dx t  

 

Figure 10. Evolution of the adaptive gain 

 

Figure 11. Control signals by ( )u t  FSMC and ( )u t FSMC adaptive gain 
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Figure 12. Evolution of error angle pendulum ( ) ( )dt t  −   and variable z  

5.3. Tracking ramp signal reference position 

Figures 13-16 illustrate the results obtained for tracking the following desired state vector:      

( ) 0d t , ( ) 0d t , ( ) 2dx t t=  and ( ) 2dx t =  

 

Figure 13. Position evolution of the cart ( )x t  and ( )dx t       

 

Figure 14. Evolution of the adaptive gain 

 

Figure 15. Control signals by ( )u t  FSMC and ( )u t FSMC adaptive gain 
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Figure 16. Evolution of error angle pendulum ( ) ( )dt t  −   and variable z  

The sliding mode control forces the system to follow the reference signal. This tracking is 

done by minimizing the tracking error, on the one hand, and by ensuring the stability of the system, 

on the other hand. The simulation results show the efficiency and performance of the fuzzy sliding 

mode control with adaptive gain. It can be seen that this controller has eliminated the chattering 

and ensured the smoothing of the control, the stabilization of the system and the tracking of the 

trajectory. 

6. Conclusion   

A class of coupling nonlinear systems is presented using fuzzy sliding mode control (FSMC). 

The idea of the control law is based on the following. First, the coupling system is divided into two 

independent subsystems, each with a unique control target that is represented in terms of a sliding 

surface. To include these sliding surfaces, an intermediary variable is added. Moreover, the 

Lyapunov approach is adopted in order to achieve the stability of the closed-loop system. Finally, 

the proposed method has been applied for examples of selected highly nonlinear systems that have 

been presented and the simulation results have validated the tracking of a reference trajectory. The 

simulation results demonstrate that the fuzzy sliding mode control with adaptive gain can achieve 

the desired performance. 

 

REFERENCES 

1. Amieur, T., Sedraoui, M., Amieur, O., Djeddi, A. & Houam, Y. (2014). Adaptive fuzzy sliding 

mode control for uncertain nonlinear SISO systems. In 2014 15th  International Conference on 

Sciences and Techniques of Automatic Control and Computer Engineering (STA), pp. 142-147. 

DOI: 10.1109/STA.2014.7086717. 

2. Arefi, M. M. & Jahed-Motlagh, M. R. (2013). Observer-based adaptive neural control of 

uncertain MIMO nonlinear systems with unknown control direction. International Journal of 

Adaptive Control and Signal Processing, 27(9), 741-754. DOI: 10.1002/acs.2347. 

3. Cao, Q., Li, S. & Zhao, D. (2016). Full-order multi-input/multi-output terminal sliding mode 

control for robotic manipulators. International Journal of Modelling, Identification and 

Control, 25(1), 17-27. DOI: 10.1504/IJMIC.2016.074297. 

4. Delavari, H., Ghaderi, R., Ranjbar, A. & Momani, S. (2010). Fuzzy fractional order sliding 

mode controller for nonlinear systems. Communications in Nonlinear Science and Numerical 

Simulation, 15(4), 963-978. DOI: 10.1016/j.cnsns.2009.05.025. 

5. Fradkov, A. L., Miroshnik, I. V. & Nikiforov, V. O. (2013). Nonlinear and Adaptive Control of 

Complex Systems. Springer Science & Business Media. 

6. Hung, L. C., Lin, H. P. & Chung, H. Y. (2007). Design of self-tuning fuzzy sliding mode 

control for TORA system. Expert Systems with Applications, 32(1), 201-212.  

http://www.rria.ici.ro/
https://doi.org/10.1109/STA.2014.7086717
doi:%2010.1002/acs.2347
doi:%2010.1016/j.cnsns.2009.05.025


Romanian Journal of Information Technology and Automatic Control, Vol. 32, No. 3, 95-108, 2022 107 

 http://www.rria.ici.ro 

7. Jafary Fesharaki, A. & Tabatabaei, M. (2022). Adaptive Hierarchical Fractional-Order Sliding 

Mode Control of an Inverted Pendulum–Cart System. Arabian Journal for Science and 

Engineering, 1-16. DOI: 10.1007/s13369-022-06613-y.  

8. Kokotović, P. & Arcak, M. (2001). Constructive nonlinear control: a historical perspective. 

Automatica, 37(5), 637-662. DOI: 10.1016/S0005-1098(01)00002-4. 

9. Lin, C. M., Chin, W. L. & Li, C. (2006). Adaptive hierarchical fuzzy sliding-mode control for a 

class of coupling nonlinear systems. International Journal of Contemporary Mathematical 

Sciences, 1(4), 177-204.  DOI: 10.12988/ijcms.2006.06019. 

10. Lo, J. C. & Kuo, Y. H. (1998). Decoupled fuzzy sliding-mode control. IEEE Transactions on 

Fuzzy Systems, 6(3), 426-435. DOI: 10.1109/91.705510. 

11. Nayfeh, A. H. & Balachandran, B. (2008). Applied Nonlinear Dynamics: Analytical, 

Computational, and Experimental Methods. John Wiley & Sons. 

12. Sui, S. & Zhao, T. (2022). Active disturbance rejection control for optoelectronic stabilized 

platform based on adaptive fuzzy sliding mode control. ISA Transactions, 125, 85-98.  

13. Sun, W., Wu, Y. Q. & Sun, Z. Y. (2020). Command filter-based finite-time adaptive fuzzy 

control for uncertain nonlinear systems with prescribed performance. IEEE Transactions on 

Fuzzy Systems, 28(12), 3161-3170. DOI: 10.1109/TFUZZ.2020.2967295. 

14. Sun, W., Yuan, W., Shao, Y., Sun, Z., Zhao, J. & Sun, Q. (2018). Adaptive fuzzy control of 

strict-feedback nonlinear time-delay systems with full-state constraints. International Journal 

of Fuzzy Systems, 20(8), 2556-2565. DOI: 10.1007/s40815-018-0545-9. 

15. Ullah, N., Shaoping, W., Khattak, M. I. & Shafi, M. (2015). Fractional order adaptive fuzzy 

sliding mode controller for a position servo system subjected to aerodynamic loading and 

nonlinearities. Aerospace Science and Technology, 43, 381-387.   

16. Van Kien, C., Son, N. N. & Anh, H. P. H. (2019). Adaptive fuzzy sliding mode control for 

nonlinear uncertain SISO system optimized by differential evolution algorithm. International 

Journal of Fuzzy Systems, 21(3), 755-768. DOI: 10.1007/s40815-018-0558-4. 

17. Yin, S., Shi, P. & Yang, H. (2015). Adaptive fuzzy control of strict-feedback nonlinear time-

delay systems with unmodeled dynamics. IEEE Transactions on Cybernetics, 46(8), 1926-1938.  

18. Yoshimura, T. (2015). Adaptive fuzzy backstepping control for MIMO uncertain discrete-time 

nonlinear systems using a set of noisy measurements. International Journal of Modelling, 

Identification and Control, 23(4), 336-345. DOI: 10.1504/IJMIC.2015.070655. 

19. Younsi, A., Amieur, T., Amieur, O., Sedraoui, M. & Taibi, D. (2017, March). Adaptive fuzzy 

sliding mode control based on linear matrix inequalities for nonlinear systems. In 2017 14th 

International Multi-Conference on Systems, Signals & Devices (SSD), pp. 287-292.   

20. Zhang, H., Xu, N., Zong, G. & Alkhateeb, A. F. (2021). Adaptive fuzzy hierarchical sliding 

mode control of uncertain under-actuated switched nonlinear systems with actuator faults. 

International Journal of Systems Science, 52(8), 1499-1514.   

 

 

Toufik AMIEUR graduated in 2009 with a Master’s Degree in Automatic, at the University 

of Biskra, Algeria. In 2017, he received his Doctoral Degree in Electrical Engineering from the 

University of Guelma, Algeria and, in 2019, he received the Habilitation Doctoral Degree from 

Kasdi Merbah University of Ouargla, Algeria. He is currently an Associate Professor at the 

University of Tebessa, Algeria. His main research area includes Nonlinear Control, Robust and 

Fractional Order Control and Renewable Energy. 

https://doi.org/10.1007/s13369-022-06613-y
https://doi.org/10.1016/S0005-1098(01)00002-4
doi:%2010.12988/ijcms.2006.06019
https://doi.org/10.1109/91.705510
https://doi.org/10.1109/TFUZZ.2020.2967295


108 Revista Română de Informatică și Automatică, vol. 32, nr. 3, 95-108, 2022 

http://www.rria.ici.ro   

 

Djamel TAIBI graduated in 2005 with a Master’s Degree with distinction from the 

Department of Electrical Engineering of the Faculty of Technology at the University of Batna. 

Since then, he has been working as an Assistant Professor at the Department of Electrical 

Engineering, at Kasdi Merbah University, in Ouargla, Algeria. His main research area includes 

Modeling of Electrical Machines, Electrical Drives Control, Power Electronics and Renewable Energy. 

 

 

Mohcene BECHOUAT received his Bachelor of Science and Master’s Degrees in 

Automatic from the University of Tebessa in 2009 and 2013, respectively. In 2017, he received his 

Doctorate Degree in Electrical Engineering from the University of Guelma, Algeria and, in 2019, 

his Habilitation Doctoral Degree from the University of Ouargla, Algeria. He is currently an 

Associate Professor at the University of Ghardaia, Algeria. His research interests include Power Energy 

Conversion Systems, Fuzzy Logic Control, Metaheuristic Optimization and Power Electronics. 

 

 

Sami KAHLA was born in Tebessa, Algeria. He received his Bachelor of Science and 

Master’s Degrees in Automatic from the University of Tebessa in 2009 and 2013, respectively. In 

2018, he received his Doctoral Degree in Electrical Engineering from the University 8 Mai 1945- 

Guelma, Algeria and, in 2021, his Habilitation Doctoral Degree. He is currently a Senior 

Researcher at the Research Center in Industrial Technologies (CRTI), in Cheraga, Algeria. His 

research interests includes Power Energy Conversion Systems, Metaheuristic Optimization and 

Power Electronics. 

 

 

Moussa SEDRAOUI received his Master’s Degree from the University of Constantine, 

Algeria, in 2001 and his Ph.D. Degree in Control from the University of Constantine, Algeria, in 

2009. He is currently a Professor at the Department of Electrical Engineering at the University of 

Guelma (Algeria). His main research interest is the application of the Evolutionary Optimization 

Methods on Multivariable Systems. 

http://www.rria.ici.ro/

