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Abstract: Food webs, some scheduling problems and DNA molecules all have in common a “linear structure” 

which can be captured through the idealized model of interval graphs (intersection graphs of intervals on a 

line). However, real data is prone to errors and noise, thus raising the question of whether the algorithmic 

results obtained for the interval graphs could be extended to more realistic models of “almost interval” graphs. 

This question is addressed in the context of computing the vertex eccentricities, one of the most studied 

centrality indices in order to determine the relative importance of nodes in a network. A positive answer is 

given for the interval +𝑘𝑣 graphs and a negative one (assuming plausible complexity hypotheses) for the 

graphs of bounded interval number. In particular, an almost linear-time algorithm for computing all vertex 

eccentricities in an interval+𝑘𝑣 graph, for any fixed 𝑘, is presented, thus improving on the recent quadratic-

time algorithm of (Bentert & Nichterlein, 2022) for this problem. 

Keywords: interval graphs, interval number, distance to triviality, diameter, eccentricities computation,  

SETH-hardness. 

Puterea modelelor de interval în problema calculării 

indicilor de centralitate 
Rezumat: Modelarea “structurii liniare” care este prezentă în mai multe sisteme, precum rețelele trofice, 

problemele de alocare a resurselor și ADN-ul, are la bază grafurile de interval (grafuri intersecție a unor 

intervale de pe o linie dreapta). Totodată, având în vedere că mulțimile de date reale pot conține greșeli și 

zgomot, este nevoie de a extinde rezultatele algoritmice obținute pentru grafurile de interval la unele clase de 

grafuri mai generale. Această problematică este abordată în contextul calculării excentricităților, datorită 

importanței acestora privind clasificarea nodurilor unei rețele. O astfel de generalizare este obținută de la 

grafurile de interval până la grafurile interval+𝑘𝑣 (obținute prin adăugarea a 𝑘 noduri într-un graf de interval). 

În special, un algoritm care rulează în timp cvasiliniar, pentru orice valoare 𝑘 fixată, este propus. Până în 

prezent, timpul de rulare al celui mai bun algoritm pentru această problema era cvadratic în numărul de noduri 

(Bentert & Nichterlein, 2022). Cu toate aceasta, este demonstrat sub unele ipoteze standard de complexitate că 

o astfel de generalizare nu este posibilă pentru grafurile al cărui număr de interval este limitat la o constantă. 

Cuvinte cheie: grafuri de interval, număr de interval, algoritmi adaptivi, calcularea excentricităților, ipoteza 

timpului exponențial puternic. 

 

1. Introduction 

The feasibility of computing centrality indices in a network, a fundamental task in Network 

analysis, in order to determine the relative importance of every unit, is studied (the larger the 

centrality of a node is, the more important it should be). As is standard in such theoretical 

investigations, a network is represented by a graph. For any undefined graph notions and terminology 

in what follows, see (Bondy & Murty, 2008). Unless stated otherwise, all graphs considered are 

undirected, simple (i.e., without loops or multiple edges), unweighted and connected. Let  𝐺 = (𝑉, 𝐸) 
be an arbitrary graph. The distance between two vertices 𝑢  and 𝑣  (sometimes called their “hop 

distance”) equals the minimum number of edges on a 𝑢𝑣-path. It is denoted in what follows by 

𝑑𝐺(𝑢, 𝑣), or simply 𝑑(𝑢, 𝑣) if graph 𝐺 is clear from the context. For communication networks in a 

broad sense (e.g., telecommunication networks, online social networks but also large-scale brain 

networks), the distance 𝑑(𝑢, 𝑣)  may be regarded as the delay for transmitting a message with 

respective sender and recipient 𝑢 and 𝑣. Let the graph centrality of vertex 𝑣 be defined as 
1

𝑒𝐺(𝑣)
, 
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where 𝑒𝐺(𝑣) =  𝑚𝑎𝑥
𝑢∈𝑉

𝑑𝐺(𝑢, 𝑣) (Hage & Harary, 1995). The value 𝑒𝐺(𝑣) is also called the eccentricity 

of vertex 𝑣. There also exist other centrality indices than the one discussed above (Das et al., 2018). 

Distances in graphs play an important role in Location theory. For instance, in order to 

broadcast a message, it is desirable to minimize the maximum distance of a node to the source. In 

this respect, an optimal location for sending such a message would be at a vertex of minimum 

eccentricity or, equivalently, one of maximum centrality. The centre of a graph is the subset of all its 

vertices of minimum eccentricity. In light of its aforementioned applications to networks, the 

problem of computing the graph centre, or even better, all vertex eccentricities, has received 

considerable attention. An introduction to all-pairs shortest paths computation can be found in (Balan, 

1992). In particular, it is well-known that for every 𝑛-vertex 𝑚-edge graph all vertex eccentricities 

can be computed in 𝑂(𝑛𝑚) time, simply by running a breadth-first search from every vertex. This 

algorithm is not practical for huge complex networks such as Facebook, with hundreds of millions 

of nodes and billions of links, for which even using a massively parallel implementation of BFS it 

takes hours to complete (Backstrom et al., 2012). The existence of a faster algorithm for computing 

all vertex eccentricities was open for decades, until it was solved in the negative by (Roditty & 

Vassilevska Williams, 2013). Specifically, they proved a surprising connection between this problem 

and the Boolean Satisfiability problem, an important problem in electronic design automation and 

many other areas in computer science. The Boolean Satisfiability problem asks whether a given logic 

formula is satisfiable. The Strong Exponential-Time Hypothesis (SETH) posits that this problem 

cannot be solved in 𝑂(2𝑐𝑁) time, for any 𝑐 < 1, where 𝑁 is the number of variables (Impagliazzo & 

Paturi, 2001). Assuming the SETH, the diameter (i.e., the maximum eccentricity of a vertex) cannot 

be computed in 𝑂(𝑛2−𝜖) time, for any 𝜖 > 0, even for 𝑛-vertex graphs with only 𝑛1+𝑜(1)  edges 

(Roditty & Vassilevska Williams, 2013). 

This above hardness result only implies that an improved algorithm for centrality computations 

is unlikely to exist for all the graphs. However, with real data at hands, it is sometimes possible to 

break this quadratic barrier (in the number 𝑚 of edges) by exploiting some underlying structure in 

the data. An interval graph is a graph 𝐺 = (𝑉, 𝐸) the vertices of which can be mapped to closed 

intervals on the real line, in such a way that two vertices 𝑢, 𝑣 ∈ 𝑉 are adjacent in if and only if their 

respective intervals 𝐼𝑢, 𝐼𝑣 intersect. Such a mapping is called an interval model of graph 𝐺. The reader 

is referred to Figure 1 for an illustration. Other well-structured graph classes and their applications 

are surveyed in (Lupu, 2001). 

 
Figure 1. An interval graph along with a corresponding interval model (Cao, 2021) 

The first introduction of interval graphs is credited to Hajös and Benzer in the 1950’s. This 

class of graphs has played a pivotal role in refining our understanding of the linear structure of DNA 

molecules (Benzer, 1959). The interval graphs were used as a mathematical model for food webs, 

a.k.a. consumer-resource systems (Cohen, 1978), and ever since they found further applications in 

job scheduling in industry (Bar-Noy et al., 2001). The first linear-time algorithm for the recognition 

of these graphs, and the construction of an interval model, was quite complicated due to its use of 

PQ trees, an intricate tree-based data structure (Booth & Lueker, 1976). Since then, simpler linear-

time algorithms were found based on alternative characterizations of these graphs (Hsu, 1992), 

(Habib et al., 2000), (Corneil et al., 1998).  

As far as this paper is concerned, all vertex eccentricities in an interval graph (and so, all graph 

centralities) can be computed in linear time with a very simple algorithm (Olariu, 1990). A different 

algorithm for computing all vertex eccentricities in an interval graph is presented (Theorem 1). It 

runs in 𝑂(𝑚 + 𝑛 ⋅ 𝑙𝑜𝑔3 𝑛) time on 𝑛-vertex, 𝑚-edge interval graphs. Although it is slightly slower 

than the state-of-the-art algorithm for this problem, what makes this algorithm interesting is that it 

can be generalized to a larger class of “almost” interval graphs. Two different extensions of interval 
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graphs are discussed in the paper. First, in his seminal work, Benzer considered 145 mutant strains 

of a bacteria-infecting virus, T4, for which he experimentally uncovered an interval graph structure 

on 144 of the 145 strains. These results imply that interval graphs are a suitable model for the 

interactions between most fragments of genetic materials in some viruses, but not necessarily for all 

of it. Let a graph be called an interval+𝑘𝑣 graph if it can be made interval by removing at most 𝑘 

vertices. Second, subsequent works have evidenced that many genes are better represented by a 

collection of unbroken sequences of nucleotides on the DNA strand rather than just by one interval 

(Chambon, 1981). A 𝑡-interval representation of a graph 𝐺 as a mapping of its vertices to subsets of 

at most 𝑡 intervals, so that two vertices are adjacent in 𝐺 if and only if some of their respective 

intervals intersect. The interval number of a graph is the least 𝑡 such that it admits a 𝑡-interval 

representation. 

Until this paper, the fastest known algorithm in order to compute all vertex eccentricities in an 

interval +𝑘𝑣 graph with 𝑛 vertices was running in 𝑂(𝑘𝑛2) time, which is only interesting if the 

number of edges is at least 𝜔(𝑛) (Bentert & Nichterlein, 2022). The fine-grained complexity of 

computing all vertex eccentricities within graphs of bounded interval number was left as an open 

problem (Ducoffe et al., 2021).  

1.1. Contributions 

The main result in the paper is an almost linear-time algorithm for computing all vertex 

eccentricities in an interval +𝑘𝑣 graph, for any fixed 𝑘 (Theorem 2). Specifically, if the input graph 

has 𝑛 vertices and 𝑚 edges, then for any positive value of 𝜖, the running time of the algorithm can 

be upper bounded by an 𝑂(2𝛿𝑘(𝑛 + 𝑚)1+𝜖), for some constant 𝛿 depending on 𝜖. The exponential 

dependency on 𝑘 is shown to be necessary assuming the SETH (Lemma 7). For that we combine, it 

seems for the first time, the properties of interval models with some range queries techniques  

used in previous works (Cabello & Knauer, 2009) and originating from database computing  

(Bentley, 1979). 

However, in contrast to this above positive result, a known construction in the literature is 

revisited (Dahlgaard & Evald, 2016) in order to show that assuming the SETH, the diameter of            

𝑛-vertex 𝑚-edge graphs with interval number two cannot be computed in 𝑂(𝑛1−𝜖𝑚) time, for any 

positive value 𝜖 (Theorem 3).  

1.2. Comparison with previous works 

There is a growing literature on the relations between range queries techniques and faster 

centralities computation algorithms (Abboud et al., 2016), (Bringmann et al., 2020), (Cabello & 

Knauer, 2009), (Ducoffe et al., 2022). Applications of these techniques to the computation of all 

shortest paths intersecting a bounded number of vertices were proposed (Ducoffe, 2022a). This 

scenario is relevant for transportation networks, where most shortest paths intersect a few “hubs” in 

the network (Cohen et al., 2003). Other applications of range queries techniques to graph classes 

with small diameter and an interval-like representation were proposed (Ducoffe et al., 2021). To the 

best of our knowledge, this work is the first to combine both approaches. Some authors also have 

studied the relations between faster centralities computation and other techniques from 

Computational Geometry, such as network Voronoi diagrams (Cabello, 2018).   

The only previous algorithm for centralities computation in an interval +𝑘𝑣 graph (Bentert & 

Nichterlein, 2022) builds on the existence of an optimal quadratic-time algorithm for computing all 

distances in an interval graph (Ravi et al., 1992). Therefore, for every fixed 𝑘, their algorithm requires 

quadratic work space. By contrast, the presented algorithm builds on range queries techniques in 

order to store a compact version of the distance matrix of an interval graph, which only requires quasi 

linear work space. The design of compact distance encodings for interval graphs has predated this 

paper (Gavoille & Paul, 2008). A different encoding than in previous works is proposed, see Lemma 4, 

which looks easier to incorporate within the main algorithm. 
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1.3. Organization of the paper 

Section 2 first presents an almost linear-time algorithm for computing all eccentricities in an 

interval graph. This algorithm is then extended to the interval+𝑘𝑣 graphs, for any fixed 𝑘, in Section 3. 

Section 4 shows that assuming the SETH, the existence of a faster algorithm for this problem can be 

ruled out for the graphs of interval number two. A few open questions are finally discussed in Section 5. 

2. Interval models and graph centralities 

Throughout the whole section, an 𝑛-vertex interval graph 𝐺 = (𝑉, 𝐸) is considered, which is 

represented as an interval model 𝐼(𝐺) = (𝐼𝑣)𝑣 ∈ 𝑉. For each vertex 𝑣 ∈ 𝑉, its interval 𝐼𝑣 is encoded 

as the ordered pair (𝑎𝑣 , 𝑏𝑣) of its two end-points, that can always be assumed to take integer values 

between 1 and 2𝑛. 

2.1. Representation of balls as intervals 

The ball of centre 𝑣 and radius ℓ contains all vertices that are at distance at most ℓ from 𝑣. 

Formally, 𝑁𝐺
ℓ[𝑣] =  { 𝑢 ∈ 𝑉 ∣ 𝑑𝐺(𝑢, 𝑣) ≤ ℓ}. The following folklore results on interval graphs are 

proved for completeness of the paper: 

Lemma 1. In any interval model of a graph 𝐺, for each vertex 𝑣 and integer ℓ, the union ⋃{𝐼𝑢 ∣

𝑢 ∈ 𝑁𝐺
ℓ[𝑣] } of all intervals representing a vertex at distance at most ℓ from 𝑣 is itself an interval, 

denoted by 𝐼ℓ(𝑣). 

Proof. The property is proven by induction on ℓ. If ℓ = 0, then 𝑁𝐺
0[𝑣] =  {𝑣}, and therefore, 

𝐼0(𝑣) = 𝐼𝑣 is an interval. From now on let ℓ > 0. By the induction hypothesis, 𝐼ℓ−1(𝑣) is an interval. 

Let 𝑢 ∈ 𝑁𝐺
ℓ[𝑣] be such that 𝑎𝑢  is minimized. In the same way, let 𝑤 ∈ 𝑁𝐺

ℓ[𝑣]  be such that 𝑏𝑤  

is maximized. Since 𝑢,𝑤 ∈ 𝑁𝐺
ℓ[𝑣] , there exist vertices 𝑢′, 𝑤′ ∈ 𝑁𝐺

ℓ−1[𝑣]  such that 

𝑑𝐺(𝑢, 𝑢′), 𝑑𝐺(𝑤,𝑤′) ≤ 1. In particular, 𝐼𝑢 ∩ 𝐼𝑢′
 ≠ ∅ and 𝐼𝑤 ∩ 𝐼𝑤′

 ≠ ∅, that implies 𝐼𝑢 ∩ 𝐼ℓ−1(𝑣) ≠
∅ and 𝐼𝑤 ∩ 𝐼ℓ−1(𝑣) ≠ ∅. Therefore, 𝐼ℓ(𝑣) = 𝐼𝑢 ∪ 𝐼ℓ−1(𝑣) ∪ 𝐼𝑤 is also an interval. ■ 

In general, not all vertices 𝑢 such that 𝐼𝑢 ⊆ 𝐼ℓ(𝑣) belong to 𝑁𝐺
ℓ[𝑣]. For instance, there may 

exist vertices 𝑢, 𝑢′ such that 𝐼𝑢 ⊆ 𝐼𝑢′
  𝑢′ ∈ 𝑁𝐺

ℓ[𝑣], and 𝑢′ is on a shortest 𝑢𝑣-path. However, the 

following slightly weaker property is true:  

Lemma 2. Let 𝑢 and 𝑣 be distinct vertices in an interval graph 𝐺. We have that 𝑑𝐺(𝑢, 𝑣) ≤ ℓ if 

and only if 𝐼𝑢 ∩ 𝐼ℓ−1(𝑣) ≠ ∅ (resp., 𝐼ℓ−1(𝑢) ∩ 𝐼𝑣 ≠ ∅). 

Proof. If 𝑑𝐺(𝑢, 𝑣) ≤ ℓ, then there exists a vertex 𝑢′ ∈ 𝑁𝐺
ℓ−1[𝑣] ∩ 𝑁𝐺

1[𝑢] (possibly, 𝑢′ = 𝑢) 

such that 𝐼𝑢 ∩ 𝐼ℓ−1(𝑣) ⊇ 𝐼𝑢 ∩ 𝐼𝑢′
 ≠ ∅ . Conversely, if 𝐼𝑢 ∩ 𝐼ℓ−1(𝑣) ≠ ∅  then let 𝑢′ ∈ 𝑁𝐺

ℓ−1[𝑣] 
satisfy 𝐼𝑢 ∩ 𝐼𝑢′

 ≠ ∅. In this situation, 𝑑𝐺(𝑢, 𝑣) ≤ 𝑑𝐺(𝑢, 𝑢′) + 𝑑𝐺(𝑢′, 𝑣) ≤ 1 + (ℓ − 1) = ℓ. ■ 

Corollary 1. Let 𝑢 and 𝑣 be distinct vertices in an interval graph 𝐺 and let ℓ > 𝑗 ≥ 0 be integers. 

We have that 𝑑𝐺(𝑢, 𝑣) ≤ ℓ if and only if 𝐼𝑗(𝑢) ∩ 𝐼ℓ−𝑗−1(𝑣) ≠ ∅. 

Proof. Clearly, 𝑑𝐺(𝑢, 𝑣) ≤ ℓ  if and only if there exists a vertex 𝑢′ ∈ 𝑁𝐺
𝑗
[𝑢]  such that 

𝑑𝐺(𝑢′, 𝑣) ≤ ℓ − 𝑗. By Lemma 2, the latter is equivalent to have 𝐼𝑢′
 ∩ 𝐼ℓ−𝑗−1(𝑣) ≠ ∅. We are done 

as 𝐼𝑗(𝑢) = ⋃{ 𝐼𝑢′
 ∣ 𝑢′ ∈ 𝑁𝐺

𝑗
[𝑢]}. ■ 

2.2. Fast computation of the balls 

For each vertex 𝑣 and integer ℓ ≥ 0, let 𝑎ℓ(𝑣), 𝑏ℓ(𝑣) denote the end-points of the interval 

𝐼ℓ(𝑣) (defined in the previous Section 2.1). Next, a data structure is presented in order to efficiently  
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compute any interval 𝐼ℓ(𝑣) (encoded by the ordered pair of its two end-points). We start with an easy 

observation: 

Lemma 3. Being given an interval model 𝐼(𝐺) for some 𝑛-vertex graph 𝐺 = (𝑉, 𝐸) and an integer 

𝑝 ≥ 0, all intervals 𝐼2𝑗−1(𝑣), 𝐼2𝑗(𝑣), for every vertex 𝑣 and every 0 ≤ 𝑗 ≤ 𝑝, can be computed in 

total 𝑂(𝑛𝑝) time. 

Proof. All values 𝑗 are considered sequentially. Let the intervals 𝐼2𝑗−1(𝑣) be given (for 𝑗 = 0, 

𝐼20−1(𝑣) = 𝐼0(𝑣) = 𝐼𝑣  is already part of the interval model, and for 𝑗 > 0  these intervals are 

computed at the previous step 𝑗 − 1 of the algorithm). By Lemma 2,  

𝑎2𝑗(𝑣) =  𝑚𝑖𝑛
 

{ 𝑎𝑢 ∣ 𝐼𝑢 ∩ 𝐼2𝑗−1(𝑣) ≠ ∅ } =  min
 

{𝑎𝑢 ∣ 𝑎2𝑗−1(𝑣) ≤ 𝑏𝑢 }. 

The points of the model are scanned, from left to right, and each point 𝑖 ∈  {1,2, … ,2𝑛} is 

processed as follows: 

1. Case 𝑖 = 𝑎𝑢  for some 𝑢: we insert 𝑎𝑢  at the end of some auxiliary list 𝐿 . At any 

moment during the scan, 𝐿 contains all left points, in order, of all intervals 𝐼𝑢 that are 

already started but not yet closed.  

2. Case 𝑖 = 𝑎2𝑗−1(𝑣) for some 𝑣: we simply set 𝑎2𝑗(𝑣) as the head 𝑎𝑢 of list 𝐿. 

3. Case 𝑖 = 𝑏𝑢 for some 𝑢: we remove 𝑎𝑢 from 𝐿. It can be done in 𝑂(1) time if we keep 

a pointer to its position in 𝐿 at the time of its insertion to this list. 

The overall running time is in 𝑂(𝑛). In the same way,  

𝑏2𝑗(𝑣) =  𝑚𝑎𝑥
 

{𝑏𝑢 ∣ 𝑎𝑢 ≤ 𝑏2𝑗−1(𝑣)}
 

.   

All values 𝑏2𝑗(𝑣) can be computed in 𝑂(𝑛) time by scanning the model from right to left and 

replacing 𝑎𝑢, 𝑎2𝑗−1(𝑣), 𝑏𝑢 by 𝑏𝑢, 𝑏2𝑗−1(𝑣), 𝑎𝑢 in the above procedure. Then, by Corollary 1, 

                             𝑎2𝑗+1−1(𝑣) =  𝑚𝑖𝑛{𝑎2𝑗−1(𝑢) ∣ 𝑎2𝑗−1(𝑣) ≤ 𝑏2𝑗−1(𝑢)}  

and  

𝑏2𝑗+1−1(𝑣) =  𝑚𝑎𝑥{𝑏2𝑗−1(𝑢) ∣ 𝑎2𝑗−1(𝑢) ≤ 𝑏2𝑗−1(𝑣)}. 

All values 𝑎2𝑗+1−1(𝑣), 𝑏2𝑗+1−1(𝑣) can be computed in 𝑂(𝑛) time by replacing the 𝐼𝑢’s by the 

𝐼2𝑗−1(𝑢)’s in the above procedures. ■  

In practice, it suffices to set 𝑝 = ⌈log 𝑛⌉. It is now proven that in order to compute any interval 

𝐼ℓ(𝑢), it suffices to store all intervals 𝐼2𝑗−1(𝑣), 𝐼2𝑗(𝑣) (pre-computed by applying Lemma 3) in some 

suitable data structure. A 2-range tree stores a static collection 𝑃 of 2-dimensional points on which 

the following queries can be performed: Given as inputs 〈𝛼, 𝛽, 𝛾, 𝛿〉, either output  

𝑚𝑖𝑛
 

{ 𝑎 ∣ (𝑎, 𝑏) ∈ 𝑃 ∩ ([𝛼; 𝛽] × [𝛾; 𝛿])} (min-query) 

or  

𝑚𝑎𝑥
 

{ 𝑏 ∣ (𝑎, 𝑏) ∈ 𝑃 ∩ ([𝛼; 𝛽] × [𝛾; 𝛿])} (max-query). 

Other types of queries can be also supported (see Section 3 for an example). If there are 𝑛 

points that need to be stored, then a 2-range tree can be constructed in 𝑂(𝑛 𝑙𝑜𝑔 𝑛) time, so that any 

query can be answered in 𝑂(𝑙𝑜𝑔 𝑛) time (Chazelle, 1990). 

Lemma 4. Being given an interval model 𝐼(𝐺) for some 𝑛-vertex graph 𝐺 = (𝑉, 𝐸), after a pre-

processing in 𝑂(𝑛 𝑙𝑜𝑔2 𝑛) time any interval 𝐼ℓ(𝑢) can be computed in 𝑂(𝑙𝑜𝑔2 𝑛) time. 

Proof.  First, Lemma 3 is applied for 𝑝 = ⌈log 𝑛⌉. For every 0 ≤ 𝑗 ≤ 𝑝, we construct a 2-range 

tree in order to store all the points (𝑎2𝑗−1(𝑣), 𝑏2𝑗−1(𝑣)). In doing so, 𝑂(log 𝑛) 2-range trees are 
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constructed, that can be done in 𝑂(𝑛 log2 𝑛) time. Then, let  𝐼ℓ(𝑢) be some interval to be computed, 

for some 𝑢 and ℓ. It may be assumed that ℓ ≠ 0 (else, 𝐼0(𝑢) = 𝐼𝑢 is already part of the model 𝐼(𝐺)). 

Let ℓ be written as ℓ = ∑ 2𝑗𝑖
1≤𝑖≤𝑞  for some 𝑝 ≥ 𝑗1 > 𝑗2 > ⋯ > 𝑗𝑞 ≥ 0. The intervals 𝐼ℓ𝑡

(𝑢) are 

constructed sequentially, where ℓ𝑡 = ∑ 2𝑗𝑖
1≤𝑖≤𝑡  for every 1 ≤ 𝑡 ≤ 𝑞. Since ℓ1 is a power of two, 

𝐼ℓ1
(𝑢) is already pre-computed for any 𝑢. From now on, 𝑞 > 𝑡 > 1 is assumed. By Corollary 1, 

𝑎ℓ𝑡+1
(𝑢) =  𝑚𝑖𝑛{ 𝑎2𝑗𝑡+1−1(𝑤) ∣ 𝑎ℓ𝑡

(𝑢) ≤  𝑏2𝑗𝑡+1−1(𝑤)} 

and  

𝑏ℓ𝑡+1
(𝑢) =  𝑚𝑎𝑥{𝑏2𝑗𝑡+1−1(𝑤) ∣ 𝑎2𝑗𝑡+1−1(𝑤) ≤ 𝑏ℓ𝑡

(𝑢)}. 

In particular, the two of 𝑎ℓ𝑡+1
(𝑢), 𝑏ℓ𝑡+1

(𝑢)  can be computed in 𝑂(𝑙𝑜𝑔 𝑛) time with two 

queries on the 𝑗𝑡+1
𝑡ℎ  2-range tree. Overall, the total time for computing 𝐼ℓ𝑞

(𝑢) = 𝐼ℓ(𝑢)  is in 

𝑂(𝑞 log 𝑛) = 𝑂(log2 𝑛). ■ 

2.3. The algorithm  

Theorem 1. All eccentricities in an interval graph 𝐺 = (𝑉, 𝐸) with 𝑛 vertices 𝑎𝑛𝑑 𝑚 edges can 

be computed in 𝑂(𝑚 + 𝑛 𝑙𝑜𝑔3 𝑛) time (resp., in 𝑂(𝑛 𝑙𝑜𝑔3 𝑛) time if an interval model is given in 

advance).  

Proof. First, an interval model 𝐼(𝐺) is computed in 𝑂(𝑛 + 𝑚) time. All points (𝑎𝑤 , 𝑏𝑤) are 

added, for every vertex 𝑤 ∈ 𝑉, in a 2-range tree. Then, Lemma 4 is applied. Given some positive 

values (ℓu), 𝑢 ∈ 𝑉, an algorithm is presented in order to determine for each vertex u separately 

whether 𝑒𝐺(𝑢) ≤ ℓ𝑢 . Indeed, doing so all eccentricities can be computed by applying 𝑂(𝑙𝑜𝑔 𝑛) 
times this algorithm, performing n simultaneous binary searches. By Lemma 2, 𝑒𝐺(𝑢) ≤ ℓ𝑢 if and 

only if  𝐼ℓ𝑢−1(𝑢) ∩ 𝐼𝑤 ≠ ∅ for every vertex 𝑤 ∈ 𝑉. In order to check whether it is the case, Lemma 

4 is applied in order to compute the interval  𝐼ℓ𝑢−1(𝑢). Then, we test for the existence of an interval 

𝐼𝑤 such that either 𝑏𝑤 < 𝑎ℓ𝑢−1(𝑢) or 𝑎𝑤 > 𝑏ℓ𝑢−1(𝑢). It can be done in 𝑂(𝑙𝑜𝑔 𝑛) time with two 

queries on our 2-range tree. Overall, the intermediate algorithm runs in 𝑂(𝑙𝑜𝑔2 𝑛) time per vertex, 

hence in 𝑂(𝑛 𝑙𝑜𝑔2 𝑛) time, and therefore the total running time in order to compute all vertex 

eccentricities (being given 𝐼(𝐺)) is in 𝑂(𝑛 𝑙𝑜𝑔3 𝑛). ■ 

3. Generalization to almost interval graphs 

The purpose of this section is to generalize Theorem 1 to the interval+𝑘𝑣 graphs, for any fixed 

𝑘. We first need the following result: 

Lemma 5. (Cao, 2016) Let 𝐺 = (𝑉, 𝐸) be an 𝑛-vertex 𝑚-edge graph. For any 𝑘, we can decide 

whether 𝐺 is an interval+𝑘𝑣 graph in 𝑂(6𝑘(𝑛 + 𝑚)) time. If yes, we can compute in the same 

time a 𝑘-subset 𝑆 such that 𝐺 ∖ 𝑆 is an interval graph. 

In general, the output interval graph 𝐺 ∖ 𝑆 may be disconnected, even if 𝐺  is connected. 

However, it can be observed that the techniques used for Theorem 1 can be applied to every 

connected component of 𝐺 ∖ 𝑆 separately, with no overhead in the total running time. As for the 

vertices in 𝑆, their eccentricities may be computed directly (and in fact, all the distances 𝑑𝐺(𝑠, 𝑣), 

for every vertices 𝑠 ∈ 𝑆  and 𝑣 ∈ 𝑉 ), in total 𝑂(𝑘𝑚) time. The main issue to be resolved is to 

determine, for every two vertices 𝑢, 𝑣 ∈ 𝑉 ∖ 𝑆, whether some shortest path is fully into 𝑉 ∖ 𝑆 (in 

which case, Theorem 1 is applied), or all their shortest paths go by 𝑆. 

A 𝑘-range tree is a data structure storing a static set of 𝑘-dimensional points, on which we can 

perform the following counting queries: given lower and upper bounds 𝛼𝑖  and 𝛽𝑖  for every 

dimension 𝑖, 1 ≤ 𝑖 ≤ 𝑘, return the number of points (𝑥1, 𝑥2, … , 𝑥𝑘) in the collection so that 𝛼𝑖 ≤
𝑥𝑖 ≤ 𝛽𝑖 for every 1 ≤ 𝑖 ≤ 𝑘. Other types of queries can be also supported. 
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Lemma 6. (Bringmann et al., 2020) Let 𝐵(𝑛, 𝑘) =  (⌈𝑙𝑜𝑔𝑛⌉+𝑘
𝑘

) . Being given 𝑛 points, a 𝑘 −range 

tree can be constructed in 𝑂(𝑘2𝐵(𝑛, 𝑘)𝑛) time, in such a way that each query can be answered 

in 𝑂(2𝑘𝐵(𝑛, 𝑘))  time. Moreover, for every 𝜖 > 0,  there exists a 𝛿 > 0  such that 𝐵(𝑛, 𝑘) =

2𝛿𝑘𝑛𝜖. 

Lemma 6 is combined with Theorem 1 in order to derive our main result in the paper: 

Theorem 2. All eccentricities in an interval+𝑘𝑣 graph 𝐺 = (𝑉, 𝐸), with 𝑛 vertices and 𝑚 edges, 

can be computed in 𝑂(6𝑘(𝑚 + 𝑘𝐵(𝑛, 𝑘 + 2)𝑛 𝑙𝑜𝑔 𝑛)) time. 

Proof. Firstly, Lemma 5 is applied, that results in a 𝑘-subset 𝑆 and an interval graph 𝐻 = 𝐺 ∖
𝑆. Then, a breadth-first search is executed from every vertex 𝑠 ∈ 𝑆, thus computing the distances 

𝑑𝐺(𝑣, 𝑠) for every vertex 𝑣 . It takes 𝑂(𝑘𝑚)  time. In doing so, the eccentricities 𝑒𝐺(𝑠)  were 

computed for every vertex 𝑠 ∈ 𝑆. Lemma 4 is applied to 𝐻. Now, in order to compute all remaining 

eccentricities, as already noticed in the proof of Theorem 1, it suffices to call 𝑂(𝑙𝑜𝑔 𝑛) times an 

algorithm solving the following decision problem: being given positive values ℓ𝑢, 𝑢 ∈ 𝑉 ∖ 𝑆, decide 

for each vertex 𝑢 separately whether 𝑒𝐺(𝑢) ≤  ℓ𝑢. For that, for each vertex 𝑢 we start computing the 

interval 𝐼ℓ𝑢−1(𝑢)  which represents 𝑁𝐻
ℓ𝑢−1[𝑢] . It can be done in 𝑂(𝑛 𝑙𝑜𝑔2 𝑛)  time by applying 

Lemma 4. Furthermore, it may be assumed, without loss of generality, that ℓ𝑢 ≥ 𝑚𝑎𝑥
 

{𝑑𝐺(𝑢, 𝑠) ∣

𝑠 ∈ 𝑆} for every vertex 𝑢. 

1. For every vertex 𝑢, the number 𝑛0(𝑢) of vertices in 𝑁𝐻
ℓ𝑢[𝑢] is computed. By Lemma 

2, these are exactly the vertices 𝑤 such that 𝐼𝑤 ∩ 𝐼ℓ𝑢−1(𝑢) ≠ ∅. Therefore, in order to 

compute all values 𝑛0(𝑢) , all points (𝑎𝑢, 𝑏𝑢)  are added in a 2-range tree, in 

𝑂(𝑛 log 𝑛) time. Then, for each vertex 𝑢 the number of such points (𝑎𝑤 , 𝑏𝑤) such that 

either 𝑎𝑤 ≤ 𝑎ℓ𝑢−1(𝑢) ≤ 𝑏𝑤  or 𝑎ℓ𝑢−1(𝑢) < 𝑎𝑤 ≤ 𝑏ℓ𝑢−1(𝑢)  is computed, that is 

exactly 𝑛0(𝑢). It only requires two counting queries per vertex.  

2. Let 𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑘}  be arbitrarily ordered. For every 1 ≤ 𝑖 ≤ 𝑘  and for every 

vertex 𝑢 , the number 𝑛𝑖(𝑢)  of vertices 𝑤  in 𝑁𝐺
ℓ𝑢[𝑢] ∖ (𝑁𝐻

ℓ𝑢[𝑢] ∪ 𝑆)  such that: 

𝑑𝐺(𝑢, 𝑠𝑖) + 𝑑𝐺(𝑠𝑖, 𝑤) ≤ ℓ𝑢 ; 𝑑𝐺(𝑢, 𝑠𝑗) + 𝑑𝐺(𝑠𝑗, 𝑤) > ℓ𝑢  for every 1 ≤ 𝑗 < 𝑖  is 

computed. For that, for every vertex 𝑢 , a (𝑘 + 2) -dimensional point is created: 

 

𝑝𝑢⃗⃗⃗⃗ = (𝑎𝑢, 𝑏𝑢, 𝑑𝐺(𝑢, 𝑠1), 𝑑𝐺(𝑢, 𝑠2),… , 𝑑𝐺(𝑢, 𝑠𝑘)),  
 

that is added in some (𝑘 + 2) −range tree. It takes 𝑂(𝑘2𝐵(𝑛, 𝑘 + 2)𝑛) time. Now, for 

every 1 ≤ 𝑖 ≤ 𝑘 and for every vertex 𝑢, the number of such points 𝑝𝑤⃗⃗⃗⃗  ⃗ that satisfy: 

• either 𝑏𝑤 < 𝑎ℓ𝑢−1(𝑢) or 𝑎𝑤 > 𝑏ℓ𝑢−1(𝑢); 

• 𝑑𝐺(𝑠𝑗 , 𝑤) > ℓ𝑢 − 𝑑𝐺(𝑢, 𝑠𝑗) for every 1 ≤ 𝑗 < 𝑖; 

• 𝑑𝐺(𝑠𝑖, 𝑤) ≤ ℓ𝑢 − 𝑑𝐺(𝑢, 𝑠𝑖); 

are counted, that is exactly 𝑛𝑖(𝑢). The last two constraints impose each of the last 

𝑘 coordinates of the point to belong to some fixed range, while the first constraint 

enforces the two first coordinates to belong to either of two disjoint ranges. As a result, 

we can compute 𝑛𝑖(𝑢) with two counting queries. It takes 𝑂(2𝑘𝐵(𝑛, 𝑘 + 2)) time per 

vertex, and it needs to be done 𝑘 times (once per index 𝑖).  

For every vertex 𝑢, the number of vertices in 𝑁𝐺
ℓ𝑢[𝑢] ∖ 𝑆 is exactly ∑ 𝑛𝑖(𝑢)0≤𝑖≤𝑘 . Hence, in 

order to decide whether 𝑒𝐺(𝑢) ≤ ℓ𝑢, it suffices to check whether this number is equal to 𝑛 − 𝑘. ■ 

We note that the dependency on 𝑘 is exponential. This section is concluded by showing this is 

unavoidable, assuming the SETH. Recall for what follows that the diameter of a graph is its 

maximum eccentricity. 
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Lemma 7. Assuming the SETH, the diameter of interval +𝑘𝑣  graphs with 𝑛  vertices and 

𝑛1+𝑜(1) edges cannot be computed in 𝑂(2𝑜(𝑘)𝑛2−𝜖) time for any 𝜖 > 0. 

Proof. A split graph is a graph 𝐺 = (𝐾 ∪ 𝑆, 𝐸) that can be vertex-partitioned into a clique 𝐾 

and a stable set 𝑆. Assuming the SETH, the diameter of 𝑛-vertex split graphs 𝐺 cannot be computed 

in 𝑂(2𝑜(𝑘)𝑛2−𝜖) time, for any 𝜖 > 0, even if |𝐾| = 𝑘 = 𝜔(𝑙𝑜𝑔 𝑛) (Abboud et al., 2016), (Borassi et 

al., 2016). Note that in this situation, 𝐺 only has 𝑂(𝑛𝑘 + 𝑘2) = 𝑛1+𝑜(1) edges. Furthermore, 𝐺 is an 

interval+𝑘𝑣 graph because it suffices to remove all vertices in the clique 𝐾 in order to obtain an 

edgeless graph, a special case of interval graph. ■ 

4. SETH-hardness results 

In what follows, the existence of a faster algorithm for centralities computation is proven to 

be unlikely for the graphs of bounded interval number, even if the latter is only two. For that, the 

following Orthogonal Vector problem (OV) is used: being given two set families 𝐴 and 𝐵 over a 

common universe 𝐶, decide whether there exist sets 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 such that 𝑎 ∩ 𝑏 = ∅. 

Lemma 8. (Abboud et al., 2016) Assuming the SETH, for every 𝜖 > 0, there is some 𝑐 > 0 such 

that OV cannot be solved in 𝑂(𝑛2−𝜖) time, even if |𝐴| = |𝐵| = 𝑛 and |𝐶| ≤ 𝑐 ⋅ 𝑙𝑜𝑔 𝑛. 

The following construction was inspired by Lemma 8. It transforms any instance (𝐴, 𝐵, 𝐶) of 

OV, with |𝐴| = |𝐵| = 𝑛 and 𝐶 = 𝑂(𝑙𝑜𝑔 𝑛), into a graph 𝐺〈𝐴, 𝐵, 𝐶〉, as follows: 

• For every 𝑎 ∈ 𝐴, a balanced binary rooted tree 𝑇𝑎 is added with root 𝑟𝑎 and |𝐶| leaves, 

indexed by the elements in 𝐶. Similarly, for every 𝑏 ∈ 𝐵, a balanced binary rooted tree 

𝑇𝑏 is added with root 𝑟𝑏 and |𝐶| leaves, also indexed by the elements in 𝐶; 

• For every 𝑐 ∈ 𝐶 , two balanced binary rooted trees 𝑇𝑐,𝐴 and 𝑇𝑐,𝐵  are added, with 𝑛 

leaves each, that are indexed by the sets in 𝐴 and 𝐵 respectively, and a common root 

vertex 𝑟𝑐; 

• Two more trees 𝑇𝐴, 𝑇𝐵 are added, with 𝑛 leaves each, that are indexed by the sets in 𝐴 

and 𝐵 respectively; 

• Fix some 𝑝 = 𝜔(𝑙𝑜𝑔 𝑛) for the remainder of the construction. For each 𝑎 ∈ 𝐴 and 𝑐 ∈
𝑎, a path 𝑃𝑎,𝑐  of length 𝑝 is added between the leaves of indices 𝑐 and 𝑎 in 𝑇𝑎, 𝑇𝑐,𝐴 

respectively. Similarly, for each 𝑏 ∈ 𝐵 and 𝑐 ∈ 𝑏 , a path 𝑃𝑏,𝑐  of length 𝑝   is added 

between the leaves of indices 𝑐 and 𝑏 in 𝑇𝑏 , 𝑇𝑐,𝐵 respectively; 

• Finally, for every 𝑎 ∈ 𝐴 a path 𝑃𝑎,𝐴 of length 𝑝 is added between 𝑟𝑎 and the leaf of index 

𝑎 in 𝑇𝐴. Furthermore, a path 𝑃𝑎 of length 𝑝 is added between 𝑟𝑎 and some new node. In 

the same way, for every 𝑏 ∈ 𝐵 a path 𝑃𝑏,𝐵 of length 𝑝 is added between 𝑟𝑏 and the leaf 

of index 𝑏 in 𝑇𝐵. A path 𝑃𝑏 of length 𝑝 is also added between 𝑟𝑏 and some new node. 

All graphs 𝐺〈𝐴, 𝐵, 𝐶〉 can be constructed in 𝑛1+𝑜(1) time; furthermore, assuming the SETH, 

their diameter cannot be computed in 𝑂(𝑛2−𝜖) time, for any 𝜖 > 0 (Dahlgaard & Evald, 2016). The 

following additional property of these graphs is proven: 

Lemma 9. Every graph 𝐺〈𝐴, 𝐵, 𝐶〉 has interval number at most two. 

Proof. We start with the following useful construction. Namely, a 2-interval representation is 

constructed for any rooted tree  𝑇  as follows. For every internal node 𝑥  disjoint intervals 

𝐼𝑦1
1 , 𝐼𝑦2

1 , … , 𝐼𝑦𝑑
1  are created for its children 𝑦1, 𝑦2, … , 𝑦𝑑 ,  and then the interval 𝐼𝑥

0 ⊇ ⋃ 𝐼𝑦𝑖
1

1≤𝑖≤𝑑  is 

created for 𝑥. Let this model be called the canonical 2-representation of tree 𝑇. All nodes in this 

canonical 2-representation have exactly two intervals, except the root and the leaves which have only 

one interval each.  
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The graph 𝐺〈𝐴, 𝐵, 𝐶〉 can be vertex-covered by the following collection of rooted trees: 

• 𝑇𝑎 ∪ 𝑃𝑎 ∪ 𝑃𝑎,𝐴 ∪ {𝑃𝑎,𝑐 ∣ 𝑐 ∈ 𝑎}, for every 𝑎 ∈ 𝐴, with root 𝑟𝑎; 

• 𝑇𝑏 ∪ 𝑃𝑏 ∪ 𝑃𝑏,𝐵 ∪ {𝑃𝑏,𝑐 ∣ 𝑐 ∈ 𝑏}, for every 𝑏 ∈ 𝐵, with root 𝑟𝑏; 

• 𝑇𝑐,𝐴 ∪ 𝑇𝑐,𝐵, for every 𝑐 ∈ 𝐶, with root 𝑟𝑐; 

• 𝑇𝐴, 𝑇𝐵. 

We now take the union of the canonical 2-representations of all these trees above. Every node 

that appears in only one tree is associated to at most two intervals. The only nodes appearing in 

multiple trees are: the leaves of 𝑇𝐴 (each appears as a leaf in the tree rooted at 𝑟𝑎, for one set 𝑎 ∈ 𝐴), 

the leaves of 𝑇𝐵 (each appears as a leaf in the tree rooted at 𝑟𝑏, for one set 𝑏 ∈ 𝐵), the leaves of 𝑇𝑐,𝐴 

for every 𝑐 ∈ 𝐶 (each appears as a leaf in the tree rooted at 𝑟𝑎, for at most one set 𝑎 ∈ 𝐴) and the 

leaves of 𝑇𝑐,𝐵 for every 𝑐 ∈ 𝐶 (each appears as a leaf in the tree rooted at 𝑟𝑏, for at most one set 𝑏 ∈
𝐵). In particular, each such node only appears in two trees, and as a leaf, therefore it is associated to 

two intervals. As a result, the union of the canonical 2-representations of all trees above is a 

2-interval representation of 𝐺〈𝐴, 𝐵, 𝐶〉. ■ 

Overall, the following result is derived by the combination of (Dahlgaard & Evald, 2016) with 

Lemma 9: 

Theorem 3. Assuming the SETH, we cannot compute the diameter of 𝑛-vertex graphs in 𝑂(𝑛2−𝜖) 
time, for any 𝜖 > 0, even if they only have 𝑛1+𝑜(1) edges and interval number at most two. 

5. Conclusion and open perspectives 

In this paper, the complexity of computing all vertex eccentricities (and therefore, all graph 

centralities) is completely settled within the interval+𝑘𝑣 graphs for every fixed 𝑘 and within the 

graphs of bounded interval number. What is known in so far for other important generalizations of 

the interval graphs is briefly summarized: 

Boxicity. The boxicity of a graph 𝐺 = (𝑉, 𝐸) is the least integer 𝑘 such that there exist interval 

graphs 𝐺1, … , 𝐺𝑘  with same vertex-set 𝑉 and so that 𝐸 is exactly the set of all common edges to 

𝐸(𝐺1),… , 𝐸(𝐺𝑘). Assuming the SETH, the diameter of 𝑛-vertex graphs with 𝑛1+𝑜(1) edges cannot 

be computed in 𝑂(𝑛2−𝜖) time, for any 𝜖 > 0, even if the graphs considered are intersection graphs 

of axis-parallel line segments (Bringmann et al., 2022). Such graphs have boxicity at most two 

(Hartman et al., 1991). 

Track number. The track number of a graph 𝐺 = (𝑉, 𝐸) is the least integer 𝑘 such that there 

exist interval graphs 𝐺1, … , 𝐺𝑘 with same vertex-set 𝑉 and so that 𝐸 is exactly the union of all edges 

in 𝐸(𝐺1), … , 𝐸(𝐺𝑘). Every bounded-degree graph also has bounded track-number (Kumar & Deo, 

1994), and therefore a faster algorithm for computing all vertex eccentricities in these graphs is 

unlikely to exist (Dahlgaard & Evald, 2016). However, either proving or disproving the existence of 

such faster algorithms for the special case of graphs with track number two seems to be open. 

Interval probe graphs. Last, a graph 𝐺 = (𝑉, 𝐸) is called an interval probe graph if for some 

bipartition 𝑃 ∪̇  𝑁 of its vertices, where 𝑁 is an independent set, 𝐺 can be made an interval graph by 

only adding edges between vertices in 𝑁. It follows from (Sheng, 1999) that every interval probe 

graph 𝐺 = (𝑃 ∪̇  𝑁, 𝐸)  has asteroidal number at most |𝑁| + 2 . Therefore, its diameter can be 

computed in 𝑂(|𝑁|3 ⋅ 𝑚
3

2)  time, where 𝑚  is the number of edges (Ducoffe, 2022b). However, 

whether the dependency on 𝑁 can be removed is an open problem. 
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