
Romanian Journal of Information Technology and Automatic Control, Vol. 32, No. 4, 33-44, 2022 33

https://doi.org/10.33436/v32i4y202203

The power of interval models for computing
graph centralities

Guillaume DUCOFFE

National Institute for Research and Development in Informatics – ICI Bucharest, Romania

guillaume.ducoffe@ici.ro

University of Bucharest, Faculty of Mathematics and Computer Science, Bucharest, Romania

Abstract: Food webs, some scheduling problems and DNA molecules all have in common a “linear structure”

which can be captured through the idealized model of interval graphs (intersection graphs of intervals on a

line). However, real data is prone to errors and noise, thus raising the question of whether the algorithmic

results obtained for the interval graphs could be extended to more realistic models of “almost interval” graphs.

This question is addressed in the context of computing the vertex eccentricities, one of the most studied

centrality indices in order to determine the relative importance of nodes in a network. A positive answer is

given for the interval +𝑘𝑣 graphs and a negative one (assuming plausible complexity hypotheses) for the

graphs of bounded interval number. In particular, an almost linear-time algorithm for computing all vertex

eccentricities in an interval+𝑘𝑣 graph, for any fixed 𝑘, is presented, thus improving on the recent quadratic-

time algorithm of (Bentert & Nichterlein, 2022) for this problem.

Keywords: interval graphs, interval number, distance to triviality, diameter, eccentricities computation,

SETH-hardness.

Puterea modelelor de interval în problema calculării

indicilor de centralitate
Rezumat: Modelarea “structurii liniare” care este prezentă în mai multe sisteme, precum rețelele trofice,

problemele de alocare a resurselor și ADN-ul, are la bază grafurile de interval (grafuri intersecție a unor

intervale de pe o linie dreapta). Totodată, având în vedere că mulțimile de date reale pot conține greșeli și

zgomot, este nevoie de a extinde rezultatele algoritmice obținute pentru grafurile de interval la unele clase de

grafuri mai generale. Această problematică este abordată în contextul calculării excentricităților, datorită

importanței acestora privind clasificarea nodurilor unei rețele. O astfel de generalizare este obținută de la

grafurile de interval până la grafurile interval+𝑘𝑣 (obținute prin adăugarea a 𝑘 noduri într-un graf de interval).

În special, un algoritm care rulează în timp cvasiliniar, pentru orice valoare 𝑘 fixată, este propus. Până în

prezent, timpul de rulare al celui mai bun algoritm pentru această problema era cvadratic în numărul de noduri

(Bentert & Nichterlein, 2022). Cu toate aceasta, este demonstrat sub unele ipoteze standard de complexitate că

o astfel de generalizare nu este posibilă pentru grafurile al cărui număr de interval este limitat la o constantă.

Cuvinte cheie: grafuri de interval, număr de interval, algoritmi adaptivi, calcularea excentricităților, ipoteza

timpului exponențial puternic.

1. Introduction

The feasibility of computing centrality indices in a network, a fundamental task in Network

analysis, in order to determine the relative importance of every unit, is studied (the larger the

centrality of a node is, the more important it should be). As is standard in such theoretical

investigations, a network is represented by a graph. For any undefined graph notions and terminology

in what follows, see (Bondy & Murty, 2008). Unless stated otherwise, all graphs considered are

undirected, simple (i.e., without loops or multiple edges), unweighted and connected. Let 𝐺 = (𝑉, 𝐸)
be an arbitrary graph. The distance between two vertices 𝑢 and 𝑣 (sometimes called their “hop

distance”) equals the minimum number of edges on a 𝑢𝑣-path. It is denoted in what follows by

𝑑𝐺(𝑢, 𝑣), or simply 𝑑(𝑢, 𝑣) if graph 𝐺 is clear from the context. For communication networks in a

broad sense (e.g., telecommunication networks, online social networks but also large-scale brain

networks), the distance 𝑑(𝑢, 𝑣) may be regarded as the delay for transmitting a message with

respective sender and recipient 𝑢 and 𝑣. Let the graph centrality of vertex 𝑣 be defined as
1

𝑒𝐺(𝑣)
,

mailto:guillaume.ducoffe@ici.ro

34 Revista Română de Informatică și Automatică, vol. 32, nr. 4, 33-44, 2022

http://www.rria.ici.ro

where 𝑒𝐺(𝑣) = 𝑚𝑎𝑥
𝑢∈𝑉

𝑑𝐺(𝑢, 𝑣) (Hage & Harary, 1995). The value 𝑒𝐺(𝑣) is also called the eccentricity

of vertex 𝑣. There also exist other centrality indices than the one discussed above (Das et al., 2018).

Distances in graphs play an important role in Location theory. For instance, in order to

broadcast a message, it is desirable to minimize the maximum distance of a node to the source. In

this respect, an optimal location for sending such a message would be at a vertex of minimum

eccentricity or, equivalently, one of maximum centrality. The centre of a graph is the subset of all its

vertices of minimum eccentricity. In light of its aforementioned applications to networks, the

problem of computing the graph centre, or even better, all vertex eccentricities, has received

considerable attention. An introduction to all-pairs shortest paths computation can be found in (Balan,

1992). In particular, it is well-known that for every 𝑛-vertex 𝑚-edge graph all vertex eccentricities

can be computed in 𝑂(𝑛𝑚) time, simply by running a breadth-first search from every vertex. This

algorithm is not practical for huge complex networks such as Facebook, with hundreds of millions

of nodes and billions of links, for which even using a massively parallel implementation of BFS it

takes hours to complete (Backstrom et al., 2012). The existence of a faster algorithm for computing

all vertex eccentricities was open for decades, until it was solved in the negative by (Roditty &

Vassilevska Williams, 2013). Specifically, they proved a surprising connection between this problem

and the Boolean Satisfiability problem, an important problem in electronic design automation and

many other areas in computer science. The Boolean Satisfiability problem asks whether a given logic

formula is satisfiable. The Strong Exponential-Time Hypothesis (SETH) posits that this problem

cannot be solved in 𝑂(2𝑐𝑁) time, for any 𝑐 < 1, where 𝑁 is the number of variables (Impagliazzo &

Paturi, 2001). Assuming the SETH, the diameter (i.e., the maximum eccentricity of a vertex) cannot

be computed in 𝑂(𝑛2−𝜖) time, for any 𝜖 > 0, even for 𝑛-vertex graphs with only 𝑛1+𝑜(1) edges

(Roditty & Vassilevska Williams, 2013).

This above hardness result only implies that an improved algorithm for centrality computations

is unlikely to exist for all the graphs. However, with real data at hands, it is sometimes possible to

break this quadratic barrier (in the number 𝑚 of edges) by exploiting some underlying structure in

the data. An interval graph is a graph 𝐺 = (𝑉, 𝐸) the vertices of which can be mapped to closed

intervals on the real line, in such a way that two vertices 𝑢, 𝑣 ∈ 𝑉 are adjacent in if and only if their

respective intervals 𝐼𝑢, 𝐼𝑣 intersect. Such a mapping is called an interval model of graph 𝐺. The reader

is referred to Figure 1 for an illustration. Other well-structured graph classes and their applications

are surveyed in (Lupu, 2001).

Figure 1. An interval graph along with a corresponding interval model (Cao, 2021)

The first introduction of interval graphs is credited to Hajös and Benzer in the 1950’s. This

class of graphs has played a pivotal role in refining our understanding of the linear structure of DNA

molecules (Benzer, 1959). The interval graphs were used as a mathematical model for food webs,

a.k.a. consumer-resource systems (Cohen, 1978), and ever since they found further applications in

job scheduling in industry (Bar-Noy et al., 2001). The first linear-time algorithm for the recognition

of these graphs, and the construction of an interval model, was quite complicated due to its use of

PQ trees, an intricate tree-based data structure (Booth & Lueker, 1976). Since then, simpler linear-

time algorithms were found based on alternative characterizations of these graphs (Hsu, 1992),

(Habib et al., 2000), (Corneil et al., 1998).

As far as this paper is concerned, all vertex eccentricities in an interval graph (and so, all graph

centralities) can be computed in linear time with a very simple algorithm (Olariu, 1990). A different

algorithm for computing all vertex eccentricities in an interval graph is presented (Theorem 1). It

runs in 𝑂(𝑚 + 𝑛 ⋅ 𝑙𝑜𝑔3 𝑛) time on 𝑛-vertex, 𝑚-edge interval graphs. Although it is slightly slower

than the state-of-the-art algorithm for this problem, what makes this algorithm interesting is that it

can be generalized to a larger class of “almost” interval graphs. Two different extensions of interval

http://www.rria.ici.ro/

Romanian Journal of Information Technology and Automatic Control, Vol. 32, No. 4, 33-44, 2022 35

 http://www.rria.ici.ro

graphs are discussed in the paper. First, in his seminal work, Benzer considered 145 mutant strains

of a bacteria-infecting virus, T4, for which he experimentally uncovered an interval graph structure

on 144 of the 145 strains. These results imply that interval graphs are a suitable model for the

interactions between most fragments of genetic materials in some viruses, but not necessarily for all

of it. Let a graph be called an interval+𝑘𝑣 graph if it can be made interval by removing at most 𝑘

vertices. Second, subsequent works have evidenced that many genes are better represented by a

collection of unbroken sequences of nucleotides on the DNA strand rather than just by one interval

(Chambon, 1981). A 𝑡-interval representation of a graph 𝐺 as a mapping of its vertices to subsets of

at most 𝑡 intervals, so that two vertices are adjacent in 𝐺 if and only if some of their respective

intervals intersect. The interval number of a graph is the least 𝑡 such that it admits a 𝑡-interval

representation.

Until this paper, the fastest known algorithm in order to compute all vertex eccentricities in an

interval +𝑘𝑣 graph with 𝑛 vertices was running in 𝑂(𝑘𝑛2) time, which is only interesting if the

number of edges is at least 𝜔(𝑛) (Bentert & Nichterlein, 2022). The fine-grained complexity of

computing all vertex eccentricities within graphs of bounded interval number was left as an open

problem (Ducoffe et al., 2021).

1.1. Contributions

The main result in the paper is an almost linear-time algorithm for computing all vertex

eccentricities in an interval +𝑘𝑣 graph, for any fixed 𝑘 (Theorem 2). Specifically, if the input graph

has 𝑛 vertices and 𝑚 edges, then for any positive value of 𝜖, the running time of the algorithm can

be upper bounded by an 𝑂(2𝛿𝑘(𝑛 + 𝑚)1+𝜖), for some constant 𝛿 depending on 𝜖. The exponential

dependency on 𝑘 is shown to be necessary assuming the SETH (Lemma 7). For that we combine, it

seems for the first time, the properties of interval models with some range queries techniques

used in previous works (Cabello & Knauer, 2009) and originating from database computing

(Bentley, 1979).

However, in contrast to this above positive result, a known construction in the literature is

revisited (Dahlgaard & Evald, 2016) in order to show that assuming the SETH, the diameter of

𝑛-vertex 𝑚-edge graphs with interval number two cannot be computed in 𝑂(𝑛1−𝜖𝑚) time, for any

positive value 𝜖 (Theorem 3).

1.2. Comparison with previous works

There is a growing literature on the relations between range queries techniques and faster

centralities computation algorithms (Abboud et al., 2016), (Bringmann et al., 2020), (Cabello &

Knauer, 2009), (Ducoffe et al., 2022). Applications of these techniques to the computation of all

shortest paths intersecting a bounded number of vertices were proposed (Ducoffe, 2022a). This

scenario is relevant for transportation networks, where most shortest paths intersect a few “hubs” in

the network (Cohen et al., 2003). Other applications of range queries techniques to graph classes

with small diameter and an interval-like representation were proposed (Ducoffe et al., 2021). To the

best of our knowledge, this work is the first to combine both approaches. Some authors also have

studied the relations between faster centralities computation and other techniques from

Computational Geometry, such as network Voronoi diagrams (Cabello, 2018).

The only previous algorithm for centralities computation in an interval +𝑘𝑣 graph (Bentert &

Nichterlein, 2022) builds on the existence of an optimal quadratic-time algorithm for computing all

distances in an interval graph (Ravi et al., 1992). Therefore, for every fixed 𝑘, their algorithm requires

quadratic work space. By contrast, the presented algorithm builds on range queries techniques in

order to store a compact version of the distance matrix of an interval graph, which only requires quasi

linear work space. The design of compact distance encodings for interval graphs has predated this

paper (Gavoille & Paul, 2008). A different encoding than in previous works is proposed, see Lemma 4,

which looks easier to incorporate within the main algorithm.

http://www.rria.ici.ro/

36 Revista Română de Informatică și Automatică, vol. 32, nr. 4, 33-44, 2022

http://www.rria.ici.ro

1.3. Organization of the paper

Section 2 first presents an almost linear-time algorithm for computing all eccentricities in an

interval graph. This algorithm is then extended to the interval+𝑘𝑣 graphs, for any fixed 𝑘, in Section 3.

Section 4 shows that assuming the SETH, the existence of a faster algorithm for this problem can be

ruled out for the graphs of interval number two. A few open questions are finally discussed in Section 5.

2. Interval models and graph centralities

Throughout the whole section, an 𝑛-vertex interval graph 𝐺 = (𝑉, 𝐸) is considered, which is

represented as an interval model 𝐼(𝐺) = (𝐼𝑣)𝑣 ∈ 𝑉. For each vertex 𝑣 ∈ 𝑉, its interval 𝐼𝑣 is encoded

as the ordered pair (𝑎𝑣 , 𝑏𝑣) of its two end-points, that can always be assumed to take integer values

between 1 and 2𝑛.

2.1. Representation of balls as intervals

The ball of centre 𝑣 and radius ℓ contains all vertices that are at distance at most ℓ from 𝑣.

Formally, 𝑁𝐺
ℓ[𝑣] = { 𝑢 ∈ 𝑉 ∣ 𝑑𝐺(𝑢, 𝑣) ≤ ℓ}. The following folklore results on interval graphs are

proved for completeness of the paper:

Lemma 1. In any interval model of a graph 𝐺, for each vertex 𝑣 and integer ℓ, the union ⋃{𝐼𝑢 ∣

𝑢 ∈ 𝑁𝐺
ℓ[𝑣] } of all intervals representing a vertex at distance at most ℓ from 𝑣 is itself an interval,

denoted by 𝐼ℓ(𝑣).

Proof. The property is proven by induction on ℓ. If ℓ = 0, then 𝑁𝐺
0[𝑣] = {𝑣}, and therefore,

𝐼0(𝑣) = 𝐼𝑣 is an interval. From now on let ℓ > 0. By the induction hypothesis, 𝐼ℓ−1(𝑣) is an interval.

Let 𝑢 ∈ 𝑁𝐺
ℓ[𝑣] be such that 𝑎𝑢 is minimized. In the same way, let 𝑤 ∈ 𝑁𝐺

ℓ[𝑣] be such that 𝑏𝑤

is maximized. Since 𝑢,𝑤 ∈ 𝑁𝐺
ℓ[𝑣] , there exist vertices 𝑢′, 𝑤′ ∈ 𝑁𝐺

ℓ−1[𝑣] such that

𝑑𝐺(𝑢, 𝑢′), 𝑑𝐺(𝑤,𝑤′) ≤ 1. In particular, 𝐼𝑢 ∩ 𝐼𝑢′
 ≠ ∅ and 𝐼𝑤 ∩ 𝐼𝑤′

 ≠ ∅, that implies 𝐼𝑢 ∩ 𝐼ℓ−1(𝑣) ≠
∅ and 𝐼𝑤 ∩ 𝐼ℓ−1(𝑣) ≠ ∅. Therefore, 𝐼ℓ(𝑣) = 𝐼𝑢 ∪ 𝐼ℓ−1(𝑣) ∪ 𝐼𝑤 is also an interval. ■

In general, not all vertices 𝑢 such that 𝐼𝑢 ⊆ 𝐼ℓ(𝑣) belong to 𝑁𝐺
ℓ[𝑣]. For instance, there may

exist vertices 𝑢, 𝑢′ such that 𝐼𝑢 ⊆ 𝐼𝑢′
 𝑢′ ∈ 𝑁𝐺

ℓ[𝑣], and 𝑢′ is on a shortest 𝑢𝑣-path. However, the

following slightly weaker property is true:

Lemma 2. Let 𝑢 and 𝑣 be distinct vertices in an interval graph 𝐺. We have that 𝑑𝐺(𝑢, 𝑣) ≤ ℓ if

and only if 𝐼𝑢 ∩ 𝐼ℓ−1(𝑣) ≠ ∅ (resp., 𝐼ℓ−1(𝑢) ∩ 𝐼𝑣 ≠ ∅).

Proof. If 𝑑𝐺(𝑢, 𝑣) ≤ ℓ, then there exists a vertex 𝑢′ ∈ 𝑁𝐺
ℓ−1[𝑣] ∩ 𝑁𝐺

1[𝑢] (possibly, 𝑢′ = 𝑢)

such that 𝐼𝑢 ∩ 𝐼ℓ−1(𝑣) ⊇ 𝐼𝑢 ∩ 𝐼𝑢′
 ≠ ∅ . Conversely, if 𝐼𝑢 ∩ 𝐼ℓ−1(𝑣) ≠ ∅ then let 𝑢′ ∈ 𝑁𝐺

ℓ−1[𝑣]
satisfy 𝐼𝑢 ∩ 𝐼𝑢′

 ≠ ∅. In this situation, 𝑑𝐺(𝑢, 𝑣) ≤ 𝑑𝐺(𝑢, 𝑢′) + 𝑑𝐺(𝑢′, 𝑣) ≤ 1 + (ℓ − 1) = ℓ. ■

Corollary 1. Let 𝑢 and 𝑣 be distinct vertices in an interval graph 𝐺 and let ℓ > 𝑗 ≥ 0 be integers.

We have that 𝑑𝐺(𝑢, 𝑣) ≤ ℓ if and only if 𝐼𝑗(𝑢) ∩ 𝐼ℓ−𝑗−1(𝑣) ≠ ∅.

Proof. Clearly, 𝑑𝐺(𝑢, 𝑣) ≤ ℓ if and only if there exists a vertex 𝑢′ ∈ 𝑁𝐺
𝑗
[𝑢] such that

𝑑𝐺(𝑢′, 𝑣) ≤ ℓ − 𝑗. By Lemma 2, the latter is equivalent to have 𝐼𝑢′
 ∩ 𝐼ℓ−𝑗−1(𝑣) ≠ ∅. We are done

as 𝐼𝑗(𝑢) = ⋃{ 𝐼𝑢′
 ∣ 𝑢′ ∈ 𝑁𝐺

𝑗
[𝑢]}. ■

2.2. Fast computation of the balls

For each vertex 𝑣 and integer ℓ ≥ 0, let 𝑎ℓ(𝑣), 𝑏ℓ(𝑣) denote the end-points of the interval

𝐼ℓ(𝑣) (defined in the previous Section 2.1). Next, a data structure is presented in order to efficiently

http://www.rria.ici.ro/

Romanian Journal of Information Technology and Automatic Control, Vol. 32, No. 4, 33-44, 2022 37

 http://www.rria.ici.ro

compute any interval 𝐼ℓ(𝑣) (encoded by the ordered pair of its two end-points). We start with an easy

observation:

Lemma 3. Being given an interval model 𝐼(𝐺) for some 𝑛-vertex graph 𝐺 = (𝑉, 𝐸) and an integer

𝑝 ≥ 0, all intervals 𝐼2𝑗−1(𝑣), 𝐼2𝑗(𝑣), for every vertex 𝑣 and every 0 ≤ 𝑗 ≤ 𝑝, can be computed in

total 𝑂(𝑛𝑝) time.

Proof. All values 𝑗 are considered sequentially. Let the intervals 𝐼2𝑗−1(𝑣) be given (for 𝑗 = 0,

𝐼20−1(𝑣) = 𝐼0(𝑣) = 𝐼𝑣 is already part of the interval model, and for 𝑗 > 0 these intervals are

computed at the previous step 𝑗 − 1 of the algorithm). By Lemma 2,

𝑎2𝑗(𝑣) = 𝑚𝑖𝑛

{ 𝑎𝑢 ∣ 𝐼𝑢 ∩ 𝐼2𝑗−1(𝑣) ≠ ∅ } = min

{𝑎𝑢 ∣ 𝑎2𝑗−1(𝑣) ≤ 𝑏𝑢 }.

The points of the model are scanned, from left to right, and each point 𝑖 ∈ {1,2, … ,2𝑛} is

processed as follows:

1. Case 𝑖 = 𝑎𝑢 for some 𝑢: we insert 𝑎𝑢 at the end of some auxiliary list 𝐿 . At any

moment during the scan, 𝐿 contains all left points, in order, of all intervals 𝐼𝑢 that are

already started but not yet closed.

2. Case 𝑖 = 𝑎2𝑗−1(𝑣) for some 𝑣: we simply set 𝑎2𝑗(𝑣) as the head 𝑎𝑢 of list 𝐿.

3. Case 𝑖 = 𝑏𝑢 for some 𝑢: we remove 𝑎𝑢 from 𝐿. It can be done in 𝑂(1) time if we keep

a pointer to its position in 𝐿 at the time of its insertion to this list.

The overall running time is in 𝑂(𝑛). In the same way,

𝑏2𝑗(𝑣) = 𝑚𝑎𝑥

{𝑏𝑢 ∣ 𝑎𝑢 ≤ 𝑏2𝑗−1(𝑣)}

.

All values 𝑏2𝑗(𝑣) can be computed in 𝑂(𝑛) time by scanning the model from right to left and

replacing 𝑎𝑢, 𝑎2𝑗−1(𝑣), 𝑏𝑢 by 𝑏𝑢, 𝑏2𝑗−1(𝑣), 𝑎𝑢 in the above procedure. Then, by Corollary 1,

 𝑎2𝑗+1−1(𝑣) = 𝑚𝑖𝑛{𝑎2𝑗−1(𝑢) ∣ 𝑎2𝑗−1(𝑣) ≤ 𝑏2𝑗−1(𝑢)}

and

𝑏2𝑗+1−1(𝑣) = 𝑚𝑎𝑥{𝑏2𝑗−1(𝑢) ∣ 𝑎2𝑗−1(𝑢) ≤ 𝑏2𝑗−1(𝑣)}.

All values 𝑎2𝑗+1−1(𝑣), 𝑏2𝑗+1−1(𝑣) can be computed in 𝑂(𝑛) time by replacing the 𝐼𝑢’s by the

𝐼2𝑗−1(𝑢)’s in the above procedures. ■

In practice, it suffices to set 𝑝 = ⌈log 𝑛⌉. It is now proven that in order to compute any interval

𝐼ℓ(𝑢), it suffices to store all intervals 𝐼2𝑗−1(𝑣), 𝐼2𝑗(𝑣) (pre-computed by applying Lemma 3) in some

suitable data structure. A 2-range tree stores a static collection 𝑃 of 2-dimensional points on which

the following queries can be performed: Given as inputs 〈𝛼, 𝛽, 𝛾, 𝛿〉, either output

𝑚𝑖𝑛

{ 𝑎 ∣ (𝑎, 𝑏) ∈ 𝑃 ∩ ([𝛼; 𝛽] × [𝛾; 𝛿])} (min-query)

or

𝑚𝑎𝑥

{ 𝑏 ∣ (𝑎, 𝑏) ∈ 𝑃 ∩ ([𝛼; 𝛽] × [𝛾; 𝛿])} (max-query).

Other types of queries can be also supported (see Section 3 for an example). If there are 𝑛

points that need to be stored, then a 2-range tree can be constructed in 𝑂(𝑛 𝑙𝑜𝑔 𝑛) time, so that any

query can be answered in 𝑂(𝑙𝑜𝑔 𝑛) time (Chazelle, 1990).

Lemma 4. Being given an interval model 𝐼(𝐺) for some 𝑛-vertex graph 𝐺 = (𝑉, 𝐸), after a pre-

processing in 𝑂(𝑛 𝑙𝑜𝑔2 𝑛) time any interval 𝐼ℓ(𝑢) can be computed in 𝑂(𝑙𝑜𝑔2 𝑛) time.

Proof. First, Lemma 3 is applied for 𝑝 = ⌈log 𝑛⌉. For every 0 ≤ 𝑗 ≤ 𝑝, we construct a 2-range

tree in order to store all the points (𝑎2𝑗−1(𝑣), 𝑏2𝑗−1(𝑣)). In doing so, 𝑂(log 𝑛) 2-range trees are

http://www.rria.ici.ro/

38 Revista Română de Informatică și Automatică, vol. 32, nr. 4, 33-44, 2022

http://www.rria.ici.ro

constructed, that can be done in 𝑂(𝑛 log2 𝑛) time. Then, let 𝐼ℓ(𝑢) be some interval to be computed,

for some 𝑢 and ℓ. It may be assumed that ℓ ≠ 0 (else, 𝐼0(𝑢) = 𝐼𝑢 is already part of the model 𝐼(𝐺)).

Let ℓ be written as ℓ = ∑ 2𝑗𝑖
1≤𝑖≤𝑞 for some 𝑝 ≥ 𝑗1 > 𝑗2 > ⋯ > 𝑗𝑞 ≥ 0. The intervals 𝐼ℓ𝑡

(𝑢) are

constructed sequentially, where ℓ𝑡 = ∑ 2𝑗𝑖
1≤𝑖≤𝑡 for every 1 ≤ 𝑡 ≤ 𝑞. Since ℓ1 is a power of two,

𝐼ℓ1
(𝑢) is already pre-computed for any 𝑢. From now on, 𝑞 > 𝑡 > 1 is assumed. By Corollary 1,

𝑎ℓ𝑡+1
(𝑢) = 𝑚𝑖𝑛{ 𝑎2𝑗𝑡+1−1(𝑤) ∣ 𝑎ℓ𝑡

(𝑢) ≤ 𝑏2𝑗𝑡+1−1(𝑤)}

and

𝑏ℓ𝑡+1
(𝑢) = 𝑚𝑎𝑥{𝑏2𝑗𝑡+1−1(𝑤) ∣ 𝑎2𝑗𝑡+1−1(𝑤) ≤ 𝑏ℓ𝑡

(𝑢)}.

In particular, the two of 𝑎ℓ𝑡+1
(𝑢), 𝑏ℓ𝑡+1

(𝑢) can be computed in 𝑂(𝑙𝑜𝑔 𝑛) time with two

queries on the 𝑗𝑡+1
𝑡ℎ 2-range tree. Overall, the total time for computing 𝐼ℓ𝑞

(𝑢) = 𝐼ℓ(𝑢) is in

𝑂(𝑞 log 𝑛) = 𝑂(log2 𝑛). ■

2.3. The algorithm

Theorem 1. All eccentricities in an interval graph 𝐺 = (𝑉, 𝐸) with 𝑛 vertices 𝑎𝑛𝑑 𝑚 edges can

be computed in 𝑂(𝑚 + 𝑛 𝑙𝑜𝑔3 𝑛) time (resp., in 𝑂(𝑛 𝑙𝑜𝑔3 𝑛) time if an interval model is given in

advance).

Proof. First, an interval model 𝐼(𝐺) is computed in 𝑂(𝑛 + 𝑚) time. All points (𝑎𝑤 , 𝑏𝑤) are

added, for every vertex 𝑤 ∈ 𝑉, in a 2-range tree. Then, Lemma 4 is applied. Given some positive

values (ℓu), 𝑢 ∈ 𝑉, an algorithm is presented in order to determine for each vertex u separately

whether 𝑒𝐺(𝑢) ≤ ℓ𝑢 . Indeed, doing so all eccentricities can be computed by applying 𝑂(𝑙𝑜𝑔 𝑛)
times this algorithm, performing n simultaneous binary searches. By Lemma 2, 𝑒𝐺(𝑢) ≤ ℓ𝑢 if and

only if 𝐼ℓ𝑢−1(𝑢) ∩ 𝐼𝑤 ≠ ∅ for every vertex 𝑤 ∈ 𝑉. In order to check whether it is the case, Lemma

4 is applied in order to compute the interval 𝐼ℓ𝑢−1(𝑢). Then, we test for the existence of an interval

𝐼𝑤 such that either 𝑏𝑤 < 𝑎ℓ𝑢−1(𝑢) or 𝑎𝑤 > 𝑏ℓ𝑢−1(𝑢). It can be done in 𝑂(𝑙𝑜𝑔 𝑛) time with two

queries on our 2-range tree. Overall, the intermediate algorithm runs in 𝑂(𝑙𝑜𝑔2 𝑛) time per vertex,

hence in 𝑂(𝑛 𝑙𝑜𝑔2 𝑛) time, and therefore the total running time in order to compute all vertex

eccentricities (being given 𝐼(𝐺)) is in 𝑂(𝑛 𝑙𝑜𝑔3 𝑛). ■

3. Generalization to almost interval graphs

The purpose of this section is to generalize Theorem 1 to the interval+𝑘𝑣 graphs, for any fixed

𝑘. We first need the following result:

Lemma 5. (Cao, 2016) Let 𝐺 = (𝑉, 𝐸) be an 𝑛-vertex 𝑚-edge graph. For any 𝑘, we can decide

whether 𝐺 is an interval+𝑘𝑣 graph in 𝑂(6𝑘(𝑛 + 𝑚)) time. If yes, we can compute in the same

time a 𝑘-subset 𝑆 such that 𝐺 ∖ 𝑆 is an interval graph.

In general, the output interval graph 𝐺 ∖ 𝑆 may be disconnected, even if 𝐺 is connected.

However, it can be observed that the techniques used for Theorem 1 can be applied to every

connected component of 𝐺 ∖ 𝑆 separately, with no overhead in the total running time. As for the

vertices in 𝑆, their eccentricities may be computed directly (and in fact, all the distances 𝑑𝐺(𝑠, 𝑣),

for every vertices 𝑠 ∈ 𝑆 and 𝑣 ∈ 𝑉), in total 𝑂(𝑘𝑚) time. The main issue to be resolved is to

determine, for every two vertices 𝑢, 𝑣 ∈ 𝑉 ∖ 𝑆, whether some shortest path is fully into 𝑉 ∖ 𝑆 (in

which case, Theorem 1 is applied), or all their shortest paths go by 𝑆.

A 𝑘-range tree is a data structure storing a static set of 𝑘-dimensional points, on which we can

perform the following counting queries: given lower and upper bounds 𝛼𝑖 and 𝛽𝑖 for every

dimension 𝑖, 1 ≤ 𝑖 ≤ 𝑘, return the number of points (𝑥1, 𝑥2, … , 𝑥𝑘) in the collection so that 𝛼𝑖 ≤
𝑥𝑖 ≤ 𝛽𝑖 for every 1 ≤ 𝑖 ≤ 𝑘. Other types of queries can be also supported.

http://www.rria.ici.ro/

Romanian Journal of Information Technology and Automatic Control, Vol. 32, No. 4, 33-44, 2022 39

 http://www.rria.ici.ro

Lemma 6. (Bringmann et al., 2020) Let 𝐵(𝑛, 𝑘) = (⌈𝑙𝑜𝑔𝑛⌉+𝑘
𝑘

) . Being given 𝑛 points, a 𝑘 −range

tree can be constructed in 𝑂(𝑘2𝐵(𝑛, 𝑘)𝑛) time, in such a way that each query can be answered

in 𝑂(2𝑘𝐵(𝑛, 𝑘)) time. Moreover, for every 𝜖 > 0, there exists a 𝛿 > 0 such that 𝐵(𝑛, 𝑘) =

2𝛿𝑘𝑛𝜖.

Lemma 6 is combined with Theorem 1 in order to derive our main result in the paper:

Theorem 2. All eccentricities in an interval+𝑘𝑣 graph 𝐺 = (𝑉, 𝐸), with 𝑛 vertices and 𝑚 edges,

can be computed in 𝑂(6𝑘(𝑚 + 𝑘𝐵(𝑛, 𝑘 + 2)𝑛 𝑙𝑜𝑔 𝑛)) time.

Proof. Firstly, Lemma 5 is applied, that results in a 𝑘-subset 𝑆 and an interval graph 𝐻 = 𝐺 ∖
𝑆. Then, a breadth-first search is executed from every vertex 𝑠 ∈ 𝑆, thus computing the distances

𝑑𝐺(𝑣, 𝑠) for every vertex 𝑣 . It takes 𝑂(𝑘𝑚) time. In doing so, the eccentricities 𝑒𝐺(𝑠) were

computed for every vertex 𝑠 ∈ 𝑆. Lemma 4 is applied to 𝐻. Now, in order to compute all remaining

eccentricities, as already noticed in the proof of Theorem 1, it suffices to call 𝑂(𝑙𝑜𝑔 𝑛) times an

algorithm solving the following decision problem: being given positive values ℓ𝑢, 𝑢 ∈ 𝑉 ∖ 𝑆, decide

for each vertex 𝑢 separately whether 𝑒𝐺(𝑢) ≤ ℓ𝑢. For that, for each vertex 𝑢 we start computing the

interval 𝐼ℓ𝑢−1(𝑢) which represents 𝑁𝐻
ℓ𝑢−1[𝑢] . It can be done in 𝑂(𝑛 𝑙𝑜𝑔2 𝑛) time by applying

Lemma 4. Furthermore, it may be assumed, without loss of generality, that ℓ𝑢 ≥ 𝑚𝑎𝑥

{𝑑𝐺(𝑢, 𝑠) ∣

𝑠 ∈ 𝑆} for every vertex 𝑢.

1. For every vertex 𝑢, the number 𝑛0(𝑢) of vertices in 𝑁𝐻
ℓ𝑢[𝑢] is computed. By Lemma

2, these are exactly the vertices 𝑤 such that 𝐼𝑤 ∩ 𝐼ℓ𝑢−1(𝑢) ≠ ∅. Therefore, in order to

compute all values 𝑛0(𝑢) , all points (𝑎𝑢, 𝑏𝑢) are added in a 2-range tree, in

𝑂(𝑛 log 𝑛) time. Then, for each vertex 𝑢 the number of such points (𝑎𝑤 , 𝑏𝑤) such that

either 𝑎𝑤 ≤ 𝑎ℓ𝑢−1(𝑢) ≤ 𝑏𝑤 or 𝑎ℓ𝑢−1(𝑢) < 𝑎𝑤 ≤ 𝑏ℓ𝑢−1(𝑢) is computed, that is

exactly 𝑛0(𝑢). It only requires two counting queries per vertex.

2. Let 𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑘} be arbitrarily ordered. For every 1 ≤ 𝑖 ≤ 𝑘 and for every

vertex 𝑢 , the number 𝑛𝑖(𝑢) of vertices 𝑤 in 𝑁𝐺
ℓ𝑢[𝑢] ∖ (𝑁𝐻

ℓ𝑢[𝑢] ∪ 𝑆) such that:

𝑑𝐺(𝑢, 𝑠𝑖) + 𝑑𝐺(𝑠𝑖, 𝑤) ≤ ℓ𝑢 ; 𝑑𝐺(𝑢, 𝑠𝑗) + 𝑑𝐺(𝑠𝑗, 𝑤) > ℓ𝑢 for every 1 ≤ 𝑗 < 𝑖 is

computed. For that, for every vertex 𝑢 , a (𝑘 + 2) -dimensional point is created:

𝑝𝑢⃗⃗⃗⃗ = (𝑎𝑢, 𝑏𝑢, 𝑑𝐺(𝑢, 𝑠1), 𝑑𝐺(𝑢, 𝑠2),… , 𝑑𝐺(𝑢, 𝑠𝑘)),

that is added in some (𝑘 + 2) −range tree. It takes 𝑂(𝑘2𝐵(𝑛, 𝑘 + 2)𝑛) time. Now, for

every 1 ≤ 𝑖 ≤ 𝑘 and for every vertex 𝑢, the number of such points 𝑝𝑤⃗⃗⃗⃗ ⃗ that satisfy:

• either 𝑏𝑤 < 𝑎ℓ𝑢−1(𝑢) or 𝑎𝑤 > 𝑏ℓ𝑢−1(𝑢);

• 𝑑𝐺(𝑠𝑗 , 𝑤) > ℓ𝑢 − 𝑑𝐺(𝑢, 𝑠𝑗) for every 1 ≤ 𝑗 < 𝑖;

• 𝑑𝐺(𝑠𝑖, 𝑤) ≤ ℓ𝑢 − 𝑑𝐺(𝑢, 𝑠𝑖);

are counted, that is exactly 𝑛𝑖(𝑢). The last two constraints impose each of the last

𝑘 coordinates of the point to belong to some fixed range, while the first constraint

enforces the two first coordinates to belong to either of two disjoint ranges. As a result,

we can compute 𝑛𝑖(𝑢) with two counting queries. It takes 𝑂(2𝑘𝐵(𝑛, 𝑘 + 2)) time per

vertex, and it needs to be done 𝑘 times (once per index 𝑖).

For every vertex 𝑢, the number of vertices in 𝑁𝐺
ℓ𝑢[𝑢] ∖ 𝑆 is exactly ∑ 𝑛𝑖(𝑢)0≤𝑖≤𝑘 . Hence, in

order to decide whether 𝑒𝐺(𝑢) ≤ ℓ𝑢, it suffices to check whether this number is equal to 𝑛 − 𝑘. ■

We note that the dependency on 𝑘 is exponential. This section is concluded by showing this is

unavoidable, assuming the SETH. Recall for what follows that the diameter of a graph is its

maximum eccentricity.

http://www.rria.ici.ro/

40 Revista Română de Informatică și Automatică, vol. 32, nr. 4, 33-44, 2022

http://www.rria.ici.ro

Lemma 7. Assuming the SETH, the diameter of interval +𝑘𝑣 graphs with 𝑛 vertices and

𝑛1+𝑜(1) edges cannot be computed in 𝑂(2𝑜(𝑘)𝑛2−𝜖) time for any 𝜖 > 0.

Proof. A split graph is a graph 𝐺 = (𝐾 ∪ 𝑆, 𝐸) that can be vertex-partitioned into a clique 𝐾

and a stable set 𝑆. Assuming the SETH, the diameter of 𝑛-vertex split graphs 𝐺 cannot be computed

in 𝑂(2𝑜(𝑘)𝑛2−𝜖) time, for any 𝜖 > 0, even if |𝐾| = 𝑘 = 𝜔(𝑙𝑜𝑔 𝑛) (Abboud et al., 2016), (Borassi et

al., 2016). Note that in this situation, 𝐺 only has 𝑂(𝑛𝑘 + 𝑘2) = 𝑛1+𝑜(1) edges. Furthermore, 𝐺 is an

interval+𝑘𝑣 graph because it suffices to remove all vertices in the clique 𝐾 in order to obtain an

edgeless graph, a special case of interval graph. ■

4. SETH-hardness results

In what follows, the existence of a faster algorithm for centralities computation is proven to

be unlikely for the graphs of bounded interval number, even if the latter is only two. For that, the

following Orthogonal Vector problem (OV) is used: being given two set families 𝐴 and 𝐵 over a

common universe 𝐶, decide whether there exist sets 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 such that 𝑎 ∩ 𝑏 = ∅.

Lemma 8. (Abboud et al., 2016) Assuming the SETH, for every 𝜖 > 0, there is some 𝑐 > 0 such

that OV cannot be solved in 𝑂(𝑛2−𝜖) time, even if |𝐴| = |𝐵| = 𝑛 and |𝐶| ≤ 𝑐 ⋅ 𝑙𝑜𝑔 𝑛.

The following construction was inspired by Lemma 8. It transforms any instance (𝐴, 𝐵, 𝐶) of

OV, with |𝐴| = |𝐵| = 𝑛 and 𝐶 = 𝑂(𝑙𝑜𝑔 𝑛), into a graph 𝐺〈𝐴, 𝐵, 𝐶〉, as follows:

• For every 𝑎 ∈ 𝐴, a balanced binary rooted tree 𝑇𝑎 is added with root 𝑟𝑎 and |𝐶| leaves,

indexed by the elements in 𝐶. Similarly, for every 𝑏 ∈ 𝐵, a balanced binary rooted tree

𝑇𝑏 is added with root 𝑟𝑏 and |𝐶| leaves, also indexed by the elements in 𝐶;

• For every 𝑐 ∈ 𝐶 , two balanced binary rooted trees 𝑇𝑐,𝐴 and 𝑇𝑐,𝐵 are added, with 𝑛

leaves each, that are indexed by the sets in 𝐴 and 𝐵 respectively, and a common root

vertex 𝑟𝑐;

• Two more trees 𝑇𝐴, 𝑇𝐵 are added, with 𝑛 leaves each, that are indexed by the sets in 𝐴

and 𝐵 respectively;

• Fix some 𝑝 = 𝜔(𝑙𝑜𝑔 𝑛) for the remainder of the construction. For each 𝑎 ∈ 𝐴 and 𝑐 ∈
𝑎, a path 𝑃𝑎,𝑐 of length 𝑝 is added between the leaves of indices 𝑐 and 𝑎 in 𝑇𝑎, 𝑇𝑐,𝐴

respectively. Similarly, for each 𝑏 ∈ 𝐵 and 𝑐 ∈ 𝑏 , a path 𝑃𝑏,𝑐 of length 𝑝 is added

between the leaves of indices 𝑐 and 𝑏 in 𝑇𝑏 , 𝑇𝑐,𝐵 respectively;

• Finally, for every 𝑎 ∈ 𝐴 a path 𝑃𝑎,𝐴 of length 𝑝 is added between 𝑟𝑎 and the leaf of index

𝑎 in 𝑇𝐴. Furthermore, a path 𝑃𝑎 of length 𝑝 is added between 𝑟𝑎 and some new node. In

the same way, for every 𝑏 ∈ 𝐵 a path 𝑃𝑏,𝐵 of length 𝑝 is added between 𝑟𝑏 and the leaf

of index 𝑏 in 𝑇𝐵. A path 𝑃𝑏 of length 𝑝 is also added between 𝑟𝑏 and some new node.

All graphs 𝐺〈𝐴, 𝐵, 𝐶〉 can be constructed in 𝑛1+𝑜(1) time; furthermore, assuming the SETH,

their diameter cannot be computed in 𝑂(𝑛2−𝜖) time, for any 𝜖 > 0 (Dahlgaard & Evald, 2016). The

following additional property of these graphs is proven:

Lemma 9. Every graph 𝐺〈𝐴, 𝐵, 𝐶〉 has interval number at most two.

Proof. We start with the following useful construction. Namely, a 2-interval representation is

constructed for any rooted tree 𝑇 as follows. For every internal node 𝑥 disjoint intervals

𝐼𝑦1
1 , 𝐼𝑦2

1 , … , 𝐼𝑦𝑑
1 are created for its children 𝑦1, 𝑦2, … , 𝑦𝑑 , and then the interval 𝐼𝑥

0 ⊇ ⋃ 𝐼𝑦𝑖
1

1≤𝑖≤𝑑 is

created for 𝑥. Let this model be called the canonical 2-representation of tree 𝑇. All nodes in this

canonical 2-representation have exactly two intervals, except the root and the leaves which have only

one interval each.

http://www.rria.ici.ro/

Romanian Journal of Information Technology and Automatic Control, Vol. 32, No. 4, 33-44, 2022 41

 http://www.rria.ici.ro

The graph 𝐺〈𝐴, 𝐵, 𝐶〉 can be vertex-covered by the following collection of rooted trees:

• 𝑇𝑎 ∪ 𝑃𝑎 ∪ 𝑃𝑎,𝐴 ∪ {𝑃𝑎,𝑐 ∣ 𝑐 ∈ 𝑎}, for every 𝑎 ∈ 𝐴, with root 𝑟𝑎;

• 𝑇𝑏 ∪ 𝑃𝑏 ∪ 𝑃𝑏,𝐵 ∪ {𝑃𝑏,𝑐 ∣ 𝑐 ∈ 𝑏}, for every 𝑏 ∈ 𝐵, with root 𝑟𝑏;

• 𝑇𝑐,𝐴 ∪ 𝑇𝑐,𝐵, for every 𝑐 ∈ 𝐶, with root 𝑟𝑐;

• 𝑇𝐴, 𝑇𝐵.

We now take the union of the canonical 2-representations of all these trees above. Every node

that appears in only one tree is associated to at most two intervals. The only nodes appearing in

multiple trees are: the leaves of 𝑇𝐴 (each appears as a leaf in the tree rooted at 𝑟𝑎, for one set 𝑎 ∈ 𝐴),

the leaves of 𝑇𝐵 (each appears as a leaf in the tree rooted at 𝑟𝑏, for one set 𝑏 ∈ 𝐵), the leaves of 𝑇𝑐,𝐴

for every 𝑐 ∈ 𝐶 (each appears as a leaf in the tree rooted at 𝑟𝑎, for at most one set 𝑎 ∈ 𝐴) and the

leaves of 𝑇𝑐,𝐵 for every 𝑐 ∈ 𝐶 (each appears as a leaf in the tree rooted at 𝑟𝑏, for at most one set 𝑏 ∈
𝐵). In particular, each such node only appears in two trees, and as a leaf, therefore it is associated to

two intervals. As a result, the union of the canonical 2-representations of all trees above is a

2-interval representation of 𝐺〈𝐴, 𝐵, 𝐶〉. ■

Overall, the following result is derived by the combination of (Dahlgaard & Evald, 2016) with

Lemma 9:

Theorem 3. Assuming the SETH, we cannot compute the diameter of 𝑛-vertex graphs in 𝑂(𝑛2−𝜖)
time, for any 𝜖 > 0, even if they only have 𝑛1+𝑜(1) edges and interval number at most two.

5. Conclusion and open perspectives

In this paper, the complexity of computing all vertex eccentricities (and therefore, all graph

centralities) is completely settled within the interval+𝑘𝑣 graphs for every fixed 𝑘 and within the

graphs of bounded interval number. What is known in so far for other important generalizations of

the interval graphs is briefly summarized:

Boxicity. The boxicity of a graph 𝐺 = (𝑉, 𝐸) is the least integer 𝑘 such that there exist interval

graphs 𝐺1, … , 𝐺𝑘 with same vertex-set 𝑉 and so that 𝐸 is exactly the set of all common edges to

𝐸(𝐺1),… , 𝐸(𝐺𝑘). Assuming the SETH, the diameter of 𝑛-vertex graphs with 𝑛1+𝑜(1) edges cannot

be computed in 𝑂(𝑛2−𝜖) time, for any 𝜖 > 0, even if the graphs considered are intersection graphs

of axis-parallel line segments (Bringmann et al., 2022). Such graphs have boxicity at most two

(Hartman et al., 1991).

Track number. The track number of a graph 𝐺 = (𝑉, 𝐸) is the least integer 𝑘 such that there

exist interval graphs 𝐺1, … , 𝐺𝑘 with same vertex-set 𝑉 and so that 𝐸 is exactly the union of all edges

in 𝐸(𝐺1), … , 𝐸(𝐺𝑘). Every bounded-degree graph also has bounded track-number (Kumar & Deo,

1994), and therefore a faster algorithm for computing all vertex eccentricities in these graphs is

unlikely to exist (Dahlgaard & Evald, 2016). However, either proving or disproving the existence of

such faster algorithms for the special case of graphs with track number two seems to be open.

Interval probe graphs. Last, a graph 𝐺 = (𝑉, 𝐸) is called an interval probe graph if for some

bipartition 𝑃 ∪̇ 𝑁 of its vertices, where 𝑁 is an independent set, 𝐺 can be made an interval graph by

only adding edges between vertices in 𝑁. It follows from (Sheng, 1999) that every interval probe

graph 𝐺 = (𝑃 ∪̇ 𝑁, 𝐸) has asteroidal number at most |𝑁| + 2 . Therefore, its diameter can be

computed in 𝑂(|𝑁|3 ⋅ 𝑚
3

2) time, where 𝑚 is the number of edges (Ducoffe, 2022b). However,

whether the dependency on 𝑁 can be removed is an open problem.

Acknowledgements

This work was supported by a grant of the Ministry of Research, Innovation and Digitalization,

CCCDI - UEFISCDI, project number PN-III-P2-2.1-PED-2021-2142, within PNCDI III.

http://www.rria.ici.ro/

42 Revista Română de Informatică și Automatică, vol. 32, nr. 4, 33-44, 2022

http://www.rria.ici.ro

REFERENCES

1. Abboud, A., Vassilevska Williams, V. & Wang, J. (2016). Approximation and fixed parameter

subquadratic algorithms for radius and diameter in sparse graphs. In Proceedings of the 27th

annual ACM-SIAM Symposium on Discrete Algorithms (SODA) (pp. 377-391).

2. Backstrom, L., Boldi, P., Rosa, M., Ugander, J. & Vigna, S. (2012). Four degrees of separation.

In Proceedings of the 4th annual ACM Web Science Conference (WebSci) (pp. 33-42).

3. Balan, D. (1992). Implementarea unui algoritm pentru determinarea drumurilor minime într-un

graf. Revista Română de Informatică și Automatică (Romanian Journal of Information

Technology and Automatic Control), 2(3-4), 83-84.

4. Bar-Noy, A., Bar-Yehuda, R, Freund, A., Naor, J. & Schieber, B. (2001). A unified approach to

approximating resource allocation and scheduling. Journal of the ACM, 48(5), 1069-1090.

5. Bentert, M. & Nichterlein, A. (2022). Parameterized complexity of diameter. Algorithmica.

6. Bentley, J. L. (1979). Decomposable searching problems. Information Processing Letters, 8(5),

244-251.

7. Benzer, S. (1959). On the topology of the genetic fine structure. In Proceedings of the National

Academy of Sciences, 45(11), (pp. 1607-1620).

8. Bondy, J. A. & Murty, U.S.R. (2008). Graph Theory. Springer, London.

9. Booth, K. S. & Lueker, G.S. (1976). Testing for the consecutive ones property, interval graphs,

and graph planarity using PQ-tree algorithms. Journal of Computer and System Sciences, 13(3),

335-379.

10. Borassi, M., Crescenzi, P. & Habib, M. (2016). Into the square: On the complexity of some

quadratic-time solvable problems. Electronic Notes in Theoretical Computer Science, 322,

51-67.

11. Bringmann, K., Husfeldt, T. & Magnusson, M. (2020). Multivariate analysis of orthogonal range

searching and graph distances. Algorithmica, 82(8), 2292-2315.

12. Bringmann, K., Kisfaludi-Bak, S., Künnemann, M., Nusser, A. & Parsaeian, Z. (2022). Towards

Sub-Quadratic Diameter Computation in Geometric Intersection Graphs. In Proceedings of the

38th International Symposium on Computational Geometry (SoCG) (pp. 21:1-21:16).

13. Cabello, S. (2018). Subquadratic algorithms for the diameter and the sum of pairwise distances

in planar graphs. ACM Transactions on Algorithms, 15(2), 1-38.

14. Cabello, S. & Knauer, C. (2009). Algorithms for graphs of bounded treewidth via orthogonal

range searching. Computational Geometry, 42(9), 815-824.

15. Cao, Y. (2016). Linear recognition of almost interval graphs. In Proceedings of the 27th annual

ACM-SIAM Symposium on Discrete Algorithms (SODA) (pp. 1096-1115).

16. Cao, Y. (2021). Recognizing (Unit) Interval Graphs by Zigzag Graph Searches. In Proceedings

of the 4th Symposium on Simplicity in Algorithms (SOSA) (pp. 92-106).

17. Chambon, P. (1981). Split genes. Scientific American, 244, 60-71.

18. Chazelle, B. (1990). Lower Bounds for Orthogonal Range Searching: I. The Reporting Case.

Journal of the ACM, 37(2), 200-212.

19. Cohen, J. E. (1978). Food webs and niche space. Princeton University Press.

20. Cohen, E., Halperin, E., Kaplan, H. & Zwick, U. (2003). Reachability and distance queries via

2-hop labels. SIAM Journal on Computing, 32(5), 1338-1355.

http://www.rria.ici.ro/

Romanian Journal of Information Technology and Automatic Control, Vol. 32, No. 4, 33-44, 2022 43

 http://www.rria.ici.ro

21. Corneil, D. G., Olariu, S. & Stewart, L. (1998). The ultimate interval graph recognition

algorithm? In Proceedings of the 9th annual Symposium on Discrete Algorithms (SODA) (pp.

175-180).

22. Dahlgaard, S. & Evald, J. (2016). Tight hardness results for distance and centrality problems in

constant degree graphs. Technical report, arXiv:1609.08403.

23. Das, K., Samanta, S. & Pal, M. (2018). Study on centrality measures in social networks: a survey.

Social network analysis and mining, 8(1), 1-11.

24. Ducoffe, G. (2022a). Eccentricity queries and beyond using hub labels. Theoretical Computer

Science, 930, 128-141.

25. Ducoffe, G. (2022b). Obstructions to faster diameter computation: Asteroidal sets. In

Proceedings of the 17th International Symposium on Parameterized and Exact Computation

(IPEC) (pp. 15:1-15:25).

26. Ducoffe, G., Habib, M. & Viennot, L. (2021). Fast Diameter Computation within Split Graphs.

Discrete Mathematics & Theoretical Computer Science, 23(3), #11.

27. Ducoffe, G., Habib, M. & Viennot, L. (2022). Diameter, eccentricities and distance oracle

computations on H-minor free graphs and graphs of bounded (distance) VC-dimension. SIAM

Journal on Computing, 51(5), 1506-1534.

28. Gavoille, C. & Paul, C. (2008). Optimal distance labeling for interval graphs and related graph

families. SIAM Journal on Discrete Mathematics, 22(3), 1239-1258.

29. Habib, M., McConnell, R., Paul, C. & Viennot, L. (2000). LexBFS and Partition Refinement,

with Applications to Transitive Orientation, Interval Graph Recognition and Consecutive Ones

Testing. Theoretical Computer Science, 234(1-2), 59-84.

30. Hage, P. & Harary, F. (1995). Eccentricity and centrality in networks. Social networks, 17(1),

57-63.

31. Hartman, I. B. A., Newman, I. & Ziv, R. (1991). On grid intersection graphs. Discrete

Mathematics, 87(1), 41-52.

32. Hsu, W.-L. (1992). A simple test for interval graphs. In Proceedings of the 19th International

Workshop on Graph Theoretic Concepts in Computer Science (WG) (pp. 11-16).

33. Impagliazzo, R. & Paturi, R. (2001). On the complexity of k-SAT. Journal of Computer and

System Sciences, 62(2), 367-375.

34. Kumar, N. & Deo, N. (1994). Multidimensional interval graphs. Congressus Numerantium, 102,

45-56.

35. Lupu, C. (2001). Rețele ortogonale. Revista Română de Informatică și Automatică (Romanian

Journal of Information Technology and Automatic Control), 11(2), 28-36.

36. Olariu, S. (1990). A simple linear-time algorithm for computing the center of an interval graph.

International Journal of Computer Mathematics, 34(3-4), 121-128.

37. Ravi, R., Marathe, M. V. & Pandu Rangan, C. (1992). An optimal algorithm to solve the all-pair

shortest path problem on interval graphs. Networks, 22(1), 21-35.

38. Roditty, L. & Vassilevska Williams, V. (2013). Fast approximation algorithms for the diameter

and radius of sparse graphs. In Proceedings of the 45th annual ACM Symposium on Theory of

Computing (STOC) (pp. 515-524).

39. Sheng, L. (1999). Cycle free probe interval graphs. Congressus Numerantium, 140, 33-42.

http://www.rria.ici.ro/

44 Revista Română de Informatică și Automatică, vol. 32, nr. 4, 33-44, 2022

http://www.rria.ici.ro

Guillaume DUCOFFE holds the position of Research Scientist at the National Institute for

Research and Development in Informatics – ICI Bucharest, Romania. He is also an Associate

Professor at the Faculty of Mathematics and Computer Science of the University of Bucharest. His

main research area is Graph Theory, of which he studies combinatorial, metric and algorithmic

aspects that are related to problems in Network Analysis. He has co-authored more than 60 papers in

top scientific journals and conferences.

Guillaume DUCOFFE ocupă funcția de cercetător științific la Institutul Național de

Cercetare-Dezvoltare în Informatică - ICI București, România. Este, de asemenea, conferențiar

universitar la Facultatea de Matematică și Informatică a Universității din București. Principalul său

domeniu de cercetare este teoria grafurilor, din care studiază aspecte combinatorii, metrice și

algoritmice care sunt în relații cu probleme de analiză a rețelelor. Este coautor a peste 60 de lucrări

în reviste și conferințe științifice de top.

http://www.rria.ici.ro/

