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Abstract. Although clustering is probably the most frequently used tool for data mining gene expression data, existing clustering
approaches face at least one of the following problems in this domain: a huge number of variables (genes) as compared to the
number of samples, high noise levels, the inability to naturally deal with overlapping clusters, the instability of the resulting clusters
w.r.t. the initialization of the algorithm and/or the difficulty in clustering genes and samples simultaneously. In this paper we show
that these problems (except maybe the first) can be elegantly dealt with by using nonnegative matrix factorizations to cluster genes
and samples simultaneously while allowing for bicluster overlaps and by employing Positive Tensor Factorization to perform a two-
way meta-clustering of the biclusters produced in several different clustering runs (thereby addressing the above-mentioned
instability). The application of our approach to a large lung cancer dataset proved computationally tractable and was able to
perfectly recover the histological classification of the various cancer subtypes represented in the dataset.
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1. Introduction and motivation

The BIOINFO project aims at developing bioinformatics tools for understanding the
mechanisms of complex diseases, such as various types of cancer or type 2 diabetes. The
main application domain of this research involves- determining diagnostic tools and/or
therapeutic targets for these diseases.

The recent advent of high-throughput experimental data, especially in molecular
biology and genomics, poses new challenges to existing data mining tools. Measuring the
expression levels of virtually every gene of a given organism in a given state has become a
routine procedure in many research labs worldwide and has also reached the commercial stage
in the last decade. Such gene chips, or microarrays, could in principle be used to determine
the variation in gene expression profiles responsible for a complex disease, such as cancer.
However, the large numbers of genes involved (up to a few tens of thousands) compared to
the small number of samples (tens to a few hundreds), as well as the large experimental noise
levels pose significant challenges to current data mining tools.

Moreover, most currently used clustering algorithms produce non-overlapping
clusters, which represents a serious limitation in this domain, since a gene is typically
involved in several biological processes. In this paper we make a biologically plausible
simplifying assumption that the overlap of influences (biological processes) is additive

X,=> X(s,gl0) 1

where X,, is the expression level of gene g in data sample s, while X(s,gl ¢) is the expression
level of g in s due to biological process c. We also assume that X(s,g ‘ ¢) is multiplicatively
decomposable into the expression level A, of the biological process (cluster) ¢ in sample s
and the membership degree S, of gene gin c:

X(s,gle)=A4A,.-S, (2

Revista Roménd de Informatica §i Automatici, vol. 16, nr. 4, 2006 — numar special 19



Fuzzy k-means [7] or Nonnegative Matrix Factorization (NMF) [4] could be used to
produce potentially overlapping clusters, but these approaches are affected by a significant
problem: the instability of the resulting clusters w.r.t. the initialization of the algorithm. This
is not surprising if we adopt a unifying view of clustering as a constrained optimization
problem, since the fitness landscape of such a complex problem may involve many different
local minima into which the algorithm may get caught when started off from different initial
states.

Although such an instability seems hard to avoid, we may be interested in the clusters
that keep reappearing in the majority of the runs of the algorithm. This is related to the
problem of combining multiple clustering systems, which is the unsupervised analog of the
classifier combination problem [8], a comparatively simpler problem that has attracted a lot of
research in the past decade. Combining clustering results is more complicated than combining
classifiers, as it involves solving an additional so-called cluster correspondence problem,
which amounts to finding the best matches between clusters generated in different runs.

The cluster correspondence problem can also be cast as an unsupervised optimization
problem, which can be solved by a meta-clustering algorithm. Choosing an appropriate meta-
clustering algorithm for dealing with this problem crucially depends on the precise notion of
cluster correspondence.

Since a very strict notion of perfect one-to-one correspondence between the clusters of
each pair of clustering runs may be too tough to be realized in most practical cases, we could
look for clusters that are most similar (although not necessarily identical) across all runs. This
is closest to performing something similar to single-linkage hierarchical clustering on the sets
of clusters produced in the various clustering runs, with the additional constraint of allowing
in each meta-cluster no more than a single cluster from each individual run. Unfortunately,
this constraint will render the meta-clustering algorithm highly unstable. Thus, while trying to
address the instability of (object-level) clustering using meta-level clustering, we end up with
instability in the meta-clustering algorithm itself. Therefore, a “softer” notion of cluster
correspondence is needed.

In this paper, we show that a generalization of NMF called Positive Tensor
Factorization (PTF) [6] is precisely the tool needed for meta-clustering “soft”, potentially
overlapping biclusters produced in different clustering runs by fuzzy k-means or NMF. We
finally show that the approach is successful at biclustering a large lung cancer gene
expression dataset.

2. Generating overlapping clusters with NMF

Combining (1) and (2) leads to a reformulation of our clustering problem as a
nonnegative factorization of the nyxn, (samples X genes) gene expression matrix X as a
product of an ngxn, (samples X clusters) matrix A and an n.xng (clusters X genes) matrix S:

ng = ZCA:C ' ch (3)

with the additional nonnegativity constraints: As 20, Sg 2 0. 4)
(Expression levels and membership degrees cannot be negative.)

More formally, this can be cast as a constrained optimization problem:

miuC(A,S):%IIX—ASHi.:%Z(X—A-S)fg )
5.2
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subject to the nonnegativity coustraints (4), and could be solved-using Lee and Seung’s
seminal Nonnegative Matrix Factorization (NMF) algorithm [4,5], shown below.!

NMF(X, A, Sg) = (4,5)

A Ay, S 5y (typically Ag,Sp are initialized randomly)

loop
(AT-X),,
} P [
% f(AT-AS), +e

(X-57),,

A M—T“-
(A-S-8T),_+¢

— A

sc

until convergence.

As explained above, such a factorization can be viewed as a “soft” clustering
algorithm allowing for overlapping clusters, since we may have several significant S, entries
on a given column g of § (so a gene g may “belong” to several clusters c).

Allowing for cluster overlap alleviates but does not completely eliminate the
instability of clustering, since the optimization problem (5), (4) is non-convex. In particular,
the NMF algorithm produces different factorizations (biclusters) (A5 for different
initializations, so meta-clustering the resulting “soft” clusters might be needed to obtain a
more stable set of clusters. However, using a “hard” meta-clustering algorithm would once
again entail an unwanted instability.

In this paper we use Positive Tensor Factorization (PTF) as a “soft” meta-clustering
approach able to deal with biclusters. This not only alleviates the instability of a “hard” meta-
clustering algorithm, but also produces a “base” set of “bicluster prototypes”, out of which all
clusters of all individual runs can be recomposed, despite the fact that they may not
correspond to identically reoccurring clusters in all individual runs (see Figure 1).

Cl](1 Cll(z) F 611(3)
b ch® cb®

rin rins, Tuns3

Figure 1. Clusters obtained in different runs are typically combinations of a “base” set of “cluster
prototypes™ (rather than identical across all runs)
3. Two-way metaclustering with PTF

We use NMF for object-level clustering and PTF for meta-clustering. This unified
approach solves in an elegant manner both the clustering and the cluster correspondence
problem. More precisely, we first run NMF as object-level clustering r times:

X wm ¥ g0 i=1,.,r 6)

! £is a regularization parameter (a very small positive number).
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where X is the gene expression matrix to be factorized (samples X genes), AY (samples x
clusters) and S (clusters x genes).

To allow the comparison of membership degrees S, for different clusters c, we scale
the rows of $© to unit norm by taking advantage of the scaling invariance of the above
factorization (6). More precisely:

Proposition. The NMF objective function (5) is invariant under the transformation A < A -
D,S« DS where D= diag(dy,...,dnc) is a positive diagonal matrix.

Since a diagonal matrix D operates on the rows of S and on the columns of A, we can
scale the rows of S to unit norm by using a diagonal scaling with 4_ = izg &2 .

Next, we perform meta-clustering of the resulting biclusters (A9, 9. This is in
contrast with as far as we know all existing meta-clustering approaches, which take only one
dimension into account (either the object- or the sample dimension). Although such one-way
approaches work well in many cases, they will fail whenever two clusters correspond to very
similar sets of genes, while differing along the sample dimension.

In the following, we show that a slight generalization of NMF, namely Positive Tensor
Factorization (PTF) [6] can be successfully used to perform two-way meta-clustering, which
takes both the gene and the sample dimensions into account.

Naively, one would be tempted to try clustering the biclusters® A® . S@instead of the
gene clusters s@, but this is practically infeasible in most real-life datasets because it involves

factorizing a matrix of size r- n. X n;- ng.. On closer inspection, however, it turns out that it is
not necessary to construct this full-blown matrix — actually we are searching for a Posifive
Tensor Factorization of this matrix >

s cg

AD ,S(i) e ;‘;1 ac(;) 'ﬂsk g 7kg )

The indices in (7) have the following domains: s — samples, g — genes, ¢ — clusters, kK —
metaclusters. To simplify the notation, we merge the indices i and ¢ into a single index (ic):

1. 5
Asiey Sticyg = Zk=l iy P Vig (D)

Note that £ and yare the “unified” versions of A® and §? respectively. More precisely, the
columns S of 4 and the corresponding rows . of ymake up a base set of bicluster prototypes
B out of which all biclusters of all individual runs can be recomposed, while ¢ encodes
the (bi)cluster-metacluster correspondence.

Ideally (in case of a perfect one-to-one correspondence of biclusters across runs), we
would expect the rows of @to contain a single significant entry fc)m(.c), S0 that each bicluster
A®. 59 corresponds to a single bicluster prototype Bomtic) Futicy- (Where m(i,c) is a function of
iandc):

(i) @ _
Ac 'Sc - a(ic).m(i,c) 'ﬂ-m(i,c) 'ym(i,c)- (8)

? 4Wis the column ¢ of A”, while §®is the row ¢ of 5O,
® More precisely, we are dealing with the constrained optimization problem

2
win C@ 4.1 =3 . (A,‘:’S,‘;’ - Zai?ﬂ,m,] subject to 0. B,y 20.

icsg k=l
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Additionally, each meta-cluster m should contain no more than a single bicluster from
each individual run, i.e. there should be no significant entries ¢, and @, Withc'#c".

Although it could be easily solved by a hard meta-clustering algorithm, such an ideal
cluster correspondence is only very seldom encountered in practice, mainly due to the
instability of most clustering algorithms.

Thus, instead of such a perfect correspondence (8), we settle for a weaker one (7°) in
which the rows of & can contain several significant entries, so that all biclusters 4©.s® are

recovered as combinations of bicluster prototypes Sy .-

The nonnegativity constraints of PTF meta-clustering are essential both for allowing
the interpretation of fy-%.as bicluster prototypes as well as for obtaining sparse factorizations.
(Experimentally, the rows of « tend to contain typically one or only very few significant
entries.)

The factorization (7") can be computed using the following multiplicative update rules
(the proofs are straightforward generalizations of those for NMF and can also be found e.g. in
[en:

(AT-B)#(S-7")
a (B Bry=(r-7")
(AT - B)*(S-¥") ©)
a (B -B=(r-y" )]
[a*(AT-p)7 S
a™-a)x (BT - PN -¥

de—a*
X~ a*

bk

where ‘*’ and ‘—’ denote element-wise multiplication and division of matrices, while *’ is
ordinary matrix multiplication.
After convergence of the PTF update rule, we make the prototype gene clusters

directly comparable to each other by normalizing the rows of yto unit norm (Il = 1), as well
as the columns of & such that Z a? =r (r being the number of runs): 4

[FAl
- Vig i By '_)Tk'zﬁqic)k'lﬁfk

= &y &,
(ie)k (ic)k
Iyl Z,-_,v ok

and then run NMF initialized with (£, ¥) to produce the final factorization X = A-S (which can
be interpreted as a stable biclustering of X allowing for overlapping clusters).

Vig P

4. Evaluation on synthetic data

Before addressing real-world gene expression datasets, we evaluated our algorithm on
synthetic datasets that match as closely as possible real microarray data. Clusters were
modelled using a hidden-variable graphical model as in Figure 2, in which each hidden
variable A, corresponds to the cluster of genes influenced by A, (clusters can overlap since an
observable variable X, can be influenced by several hidden variables A,).

* In order to be able to interpret Sand yas “unified” A” and 5@ respectively, we need to have 3 oy =1.ie.
O

Y, a0 =rosince x =3 4050 =3 (5 00) B, -,
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Figure 2. Hidden variable model for generating clusters

Since real-world microarray data are log-normally distributed, we sampled the hidden
variables from a log-normal distribution with parameters =2, 0=0.5, while the influence
coefficients S, between hidden and observable variables were sampled from a uniform
distribution over the interval [1,2]. Finally, we added logz-normally distributed noise & with
parameters Lnoise=0, Croise=0.5. Thus we generated our data using the model X = A-S+&

We chose problem dimensions of the order of our real-world application (to be
described in the next Section): Rsumpies=50, fgenes=100, number of genes (respectively samples)
per cluster 30 (respectively 15). We compared 4 meta-clustering algorithms (fuzzy k-means,
NMF, PTF and the best runs} over 10 object-level NMF clustering runs. (Other object level
clustering methods perform very poorly and are not shown here). Figures 3-5 below present a
comparison of the meta-clustering algorithms w.r.t. the number of clusters (ranging from 2 to
16). The Figures depict average values over 10 separate runs of the whole algorithm (with
different randomly generated clusters), as well as the associated SEM bars. Note that although

all algorithms produce quite low relative errors £y =IX-A-SI/IX16 (under 16%)7, they behave
quite differently when it comes to recovering the original clusters. In a certain way, the match
of the recovered clusters with the original ones is more important than the relative error.

Relalive errors for various mela-clustering algorithms (mean over 10 runs)

o= NMF
— PTF
0.2(1-~ bestrun
- - harzy k=means

relative error
~

01

] 2 4 8 )
number of biclusters

Figure 3. Relative errors versus number of clusters

Defining the match between two sets of possibly overlapping clusters is nontrivial. For
each cluster C; from clustering 1, we determine the single cluster C; from clustering 2 into

which it is best included, i.e. the one with the largest GG IN1G1 we proceed analogously

® i.e. the one with the smallest relative error.
g (ApSp) are the factorizations output by the algorithms.
" Except for fuzzy k-means which misbehaves for large numbers of clusters.
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for the clusters C; from clustering 2. Then, for each cluster C; (from clustering 1), we
determine its match 'GNG 1C VUG with the union C; of clusters from clustering 2, for
which C; is the best including cluster (as determined in the previous step). Similarly, we
determine matches for clusters C from clustering 2. The average match of the two clusterings
is then the mean of all these matches (for all C; and all C3).

Figure 4 shows that PTF consistently outperforms the other meta-clustering algorithms in
terms of recovering the original clusters. Note that since clusters were generated randomly,
their overlap increases with their number, so it is increasingly difficult for the meta-clustering
algorithm to discern between them, leading to a decreasing match. This can be directly seen in
Figure 5, where we depict both the cluster overlaps (in the initial data) and the matches of the
recovered clusters with the original ones. The inverse correlation between bicluster overlap
and matches is obvious (Pearson correlation coefficient -0.92).

Mean matches lor various meta—clustering algorithms (mean over 10 runs) Average overlap of input dataset

1
—O- NMF i I - /’Z___r—‘k_A
— PTF i i
09 ~« pestam o9 i i
- - huzzy kemeans .
08 -
08 % 1
07 0.7
g
Eos Fos
5
8 3
£ o3 g ot
H 2
g g <
S04 \ 3 oar .
H < £,
H . R
03 e (X1 =
02 T W e 0.2k
sy - =
01 ey osf == Dicusier overiap
- — gena clusier avarap
= _mean maich for PTF

(] 2 4 12 14 16 18 ] 2 o 12 14 16 18

s & 10 8 10
number of biclusters number of biclusters

Figure 4. Mean match versus number of clusters ~ Figure 5. Overlaps and matches are inversely correlated

Among all object-level clustering algorithms tried (k-means, fuzzy k-means and
NMF), only NMF behaves consistently well. The conceptual elegance of the combination of
NMF as object-level clustering and PTF as meta-clustering thus pays off in terms of
performance.

5. Metaclustering a lung cancer gene expression dataset

In the following we show that metaclustering is successful at biclustering a large lung
cancer dataset from the Meyerson lab [10].

Using HG-U95Av2 Affymetrix oligonucleotide microarrays, Bhattacharjee et al. [10]
have measured mRNA expression levels of 12600 transcript sequences (genes) in 186 lung
tumor samples (139 adenocarcinomas, 21 squamous cell lung carcinomas, 6 small cell lung
cancers, 20 pulmonary carcinoids) and 17 normal lung samples (203 samples in total).

Since the raw CEL files (originating from the scanner software) were presumably
processed by the authors with older Affymetrix MAS4 software, certain gene expression
value estimations are negative®. Therefore, we applied separate additive corrections for genes
having negative values so that all gene expression values become positive. (We avoided a
global scaling of the samples since various forms of cancer may affect a large fraction of the
genome.)

8 This is due to MAS4 using a PM — MM model, where PM is the expression level of perfect match probes,
while MM that of mismatch probes.
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Since the raw CEL files (originating from the scanner software) were presumably
processed by the authors with older Affymetrix MAS4 software, certain gene expression
value estimations are negative’. Therefore, we applied separate additive corrections for genes
having negative values so that all gene expression values become positive. (We avoided a
global scaling of the samples since various forms of cancer may affect a large fraction of the
genome.)

For testing our metaclustering algorithm, we first selected a subset of genes that are
differentially expressed between the classes. ANOVA, pairwise t-tests or SAM [11] could
have been used for this purpose, but we preferred the following SNR measure, since it
discourages large intra-class STD in both classes:

SMR,,, = Hetoss — Hoormat

Otese T O romat

More precisely, we selected the genes with an average expression level over 100 w
and having ISNR .| > 2 for at least one of the classes (small cell, squamous or carcinoid).
There were 251 such genes.

Since adenocarcinoma is a very heterogeneous disease, whose subclasses are poorly
understood at the molecular level, we discarded the adeno samples from the dataset and used
the histological classification of samples provided in the supplementary material to the
original paper [1010] as a gold standard for the evaluation of the biclustering results.

To eliminate the bias towards genes with high expression values, the resulting
restricted gene expression matrix was then normalized by separate scalings of the genes such
that their norms (uncentred STDs) become equal.

Although nonnegative factorizations have the advantage of obtaining sparse and easily
interpretable“ decompositions, they cannot directly account for gene down-regulation. To
deal with gene down-regulation in the context of NMF, we extended the gene expression
matrix with new “down-regulated genes” g’ associated to the original genes g as follows:

&’ = pos(mean(gnomal) — §)
where mean(grormar) is the average of the gene over the normal samples, while pos(-) is the
Heaviside step function.'

We then used our metaclustering algorithm to factorize the extended gene expression
matrix as follows (with n.=4 and running PTF over 20 NMF runs):

Xss = Z:Asc 'Scs
(The matrix X has 64 rows (samples) and 2x251=502 columns (extended genes).)

The following Figure 6 shows the resulting sample matrix A. Note that the algorithm
has recovered the sample clusters with high accuracy (as can be seen in Figure 6).

The relative error of the decomposition is, _ [l - a5, _ o272, » While the relative
Ix1, ’

errors of the 20 individual runs are slightly higher.

® This is due to MAS4 using a PM — MM model, where PM is the expression level of perfect match probes,
while MM that of mismatch probes.

1% For Affymetrix chips, expression levels below 100 are considered to be too low to be reliable.

! Since no complex cancellations of positive and negative terms are allowed.

2 pos(x) = x if x> 0 and 0 otherwise.
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Cluster membership degrees S., were considered significant if they were larger than
the threshold & =1/ =0125.

A(samples,clusters)

2 a3 4

Figure 6. The sample clusters

Note that the overlap between the small cell and carcinoid sample clusters' has a
biological interpretation: both contain samples of tumors of neuroendocrine type. The low
mixing coefficients indicate however that carcinoids are highly divergent from the malignant
small cell tumors.

We also looked in detail at some known marker genes. For example, the known small
cell marker ASCLI (achaete scute 1) is specific to the small cell cluster, while KRTS5 (keratin
5) is specific to the squamous cluster.

On the other hand, known proliferative markers like PCNA (proliferating cell nuclear
antigen), MCM2 and MCMG are common to small cell and squamous clusters, as expected.

Overall, our metaclustering algorithm proved quite robust at rediscovering the known
histological classification of the various lung cancer types in the Meyerson dataset.

6. Related work and conclusions

In this paper we show that nonnegative decompositions such as NMF and PTF can be
combined in a non-trivial way to obtain an improved meta-clustering algorithm for gene
expression data. The approach deals with overlapping clusters and alleviates the annoying
instability of currently used algorithms by using an advanced two- way meta-clustering
technique based on fensor (rather than matrix) factorizations.

The main contribution of this paper consists however in applying our PTF
metaclustering approach to the Meyerson lab lung cancer dataset [10], for which the
algorithm was able to perfectly recover the known histological classification of the various
lung cancer types represented in the dataset.

Related work by Bradley and Fayyad [1] uses k-means for meta-clustering a number
of k-means runs on subsamples of the data for initializing a final k-means run. The approach
was aimed at handling large datasets rather than improving the stability of clustering. So it is

13 Columns 3 and 1 of A in Figure 6.
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not surprising that the use of a “hard” clustering approach like k-means in domains featuring
overlapping biclusters produces dramatically less accurate results than our approach using
PTF and NMF.

Our approach is also significantly different from other biclustering approaches, such as
Cheng and Church”’s biclustering [9], which is based on a simpler additive model that is not
scale invariant (and thus problematic in the case of gene expression data).
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