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Rezumat: Scopul principal al acestui scurt articol este acela de a analiza câteva posibile grade de contradicţie între două 
reguli exprimate în logici fuzzy. Pe această bază, se propun implementări software utile, în special în cercetări referitoare 
la optimizarea multi-obiectiv automată a unor sisteme complexe de calcul. În particular, calculul automat al gradelor de 
contradicţie aferente unor ontologii de domeniu reprezentate prin reguli în logici fuzzy – precum cele propuse în [4] - este 
de un interes ştiinţific cert. 

Cuvinte cheie: Reguli reprezentate în logici fuzzy, metrici de similaritate/disimilaritate, grade de contradicţie, arhitectura 
calculatoarelor. 

Abstract: The main aim of this short note is to analyze some degrees of contradiction for two CNF fuzzy rules and to 
suggest some possible useful software implementations, especially for Multi-Objective Optimization through Automatic 
Design Space Exploration applied in Advanced Computer Architecture research. Particularly, automatically calculating 
the degrees of contradiction for domain ontologies represented using fuzzy logic rules - like that proposed in [4] - would 
be of certain scientific interest. 
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1. Introduction 

We are considering two classical logical rules represented as below: 

R1: IF A1=5 AND A2=9 THEN O=1,       (1) 

R2: IF A1=5 AND A2=9 THEN O=0        (2) 

It’s obvious that these rules are contradictory because the antecedents are identical and the 
outputs are different. This contradiction metaphor will be further used for proposing degree of 
contradiction metrics for fuzzy logic rules. 

Now we are considering two fuzzy rules Ri and Rj represented in the Conjunctive Normal Form 
(CNF). Both rules have the same output O (consequent). The rules are defined as the followings: 

Ri: IF A1=V(A1
i) AND A2=V(A2

i) AND … AND Am=V(Am
i) THEN O=V(Oi),  (3) 

where V(A1
i), V(A2

i), …, V(Am
i) are gradual discrete functions (or fuzzy sets memberships 

functions) associated to the linguistic variables A1, A2, …, Am respectively, and V(Oi) represents a 
fuzzy sets memberships function of the linguistic variable O. 

Rj: IF A1=V(A1
j) AND A2=V(A2

j) AND … AND Am=V(Am
j) THEN O=V(Oj),  (4) 

where V(A1
j), V(A2

j), …, V(Am
j) are fuzzy sets memberships functions of the linguistic variables 

A1, A2, …, Am respectively, and V(Oj) represents a fuzzy sets memberships function of the 
linguistic variable O. 

2. Degrees of contradiction between two fuzzy rules 

In this context, it makes sense to define a degree of contradiction between the fuzzy rules Ri 
and Rj. In [2] it is proposed a definition for the degree of contradiction between two fuzzy rules 
having the same antecedents and different consequent (output) values, as the following one: 
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C(Ri, Rj)= S(Ii, Ij).D(V(Oi), V(Oj)) = 
m

S
m

∑
=1k

j
k

i
k ))V(A ),V(A(

.D(V(Oi), V(Oj))  (5) 

where ))V(A ),V(A( j
k

i
kS  represents a similarity metric between two fuzzy sets belonging to the 

fuzzy rule antecedents and D represents a dissemblance (dissimilarity) metric between two fuzzy 
sets representing the fuzzy rules’ consequent. Similarity represents a metric of the non-
contradiction of two fuzzy sets membership functions. When S and D are normalized (belonging to 
[0, 1] interval) it might be considered that D(x, y)=1-S(x, y), ∀ x,y∈X (set of fuzzy memberships). 

We noted S(Ii, Ij)= 
m

S
m

∑
=1k

j
k

i
k ))V(A ),V(A(

       (6) 

where Ii and Ij are the fuzzy rules antecedents represented as the vectors Ii = [A1=V(A1
i), 

A2=V(A2
i), …, Am=V(Am

i)] and Ij = [A1=V(A1
j), A2=V(A2

j), …, Am=V(Am
j)]. Of course, other 

aggregation formulas would be possible (harmonic mean, etc.). 

Similarity metrics must fulfill symmetry (S(x, y)=1 ⇔ x=y), reflexivity (S(x,y) = S(y,x)), and 
sensitivity mathematical properties. Also it is necessary that ∀ x,y,z∈X  S(x,z)≤S(x,y) + S(y,z). 

It is obvious that C(Ri, Rj)=1 if and only if S(Ii, Ij)=1 and D(V(Oi), V(Oj))=1. 

In [3] the authors proposed some degrees of contradiction for two fuzzy sets identified as their 
membership functions and determined some of their mathematical properties. In [2] the authors 
proposed a dissimilarity metric called dissemblance index considering two fuzzy sets defined on R 
set (thus the membership function is m:R [0, 1]). They are defining the dissimilarity between two 
fuzzy sets – noted by us with ))V(A ),V(A( j

k
i
kD ∈[0, 1] - as a normalized positive difference 

between the areas defined by the corresponding membership functions (see the corresponding 
formulas in [2] pages 7-8). Taking into account that D is normalized, it is obvious that S can be 
defined as: ))V(A ),V(A( j

k
i
kS =1- ))V(A ),V(A( j

k
i
kD . 

Instead of defining dissimilarity between two fuzzy sets we propose - as an simpler computing 
alternative - to calculate, in a run-time manner, the dissimilarity between the concrete crisp values 
Val(Ak

i), Val(Ak
j) associated to the linguistic variables Ak

i, Ak
j respectively. Considering the 

associated membership functions MAk
i: R [0, 1] and MAk

j: R [0, 1] and noting them 
MAk

i(Val(Ak
i))= VAk

i, MAk
j(Val(Ak

j))= VAk
j, the dissimilarity between the crisp values Val(Ak

i) 
and Val(Ak

j) can be defined, for example, as D(Val(Ak
i), Val(Ak

j))=  VA-VA j
k

i
k . In this case the 

dissimilarity between two fuzzy rules antecedents can be calculated, similar with formula (6), as 

D(Ii, Ij)= m

m

∑
=1k

i
k

j
k VA-VA

. If the dissimilarity value is over a certain threshold, the two rules might 

be too contradictory. 

In [1] the authors are proposing other similarity metrics based on the distance between two 
fuzzy sets (A, B). According to them some of the possible relationships between distance d(A,B) 
and similarity S(A,B) are the followings: 

S(A,B)=1/(1+d(A,B)) or S(A,B)=e-ad(A,B), where a represents the steepness measure. 

Distances like (normalized) Hamming distance, (non-normalized) Euclidian distance - 
dE(A,B)=dE – and others are proposed (see the concrete formulas in [1] page 195). For example: if 
A and B are two fuzzy sets with the corresponding membership functions mA and mB, the 

normalized Hamming distance is defined as dE(A,B)=
n
1 ∑

=

−
n

i
iBiA xmxm

1
)()(               (7). 
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For normalizing Euclidian distance dE between two fuzzy sets we might use as an algebraic 

“squashing” function like dE
E

2

E

d1

d

+
, taking values in [0, 1] interval for any positive argument 

(dE). Other “squashing” functions are possible (for example the sigmoid activation function given 
by the well-known expression 1/(1+exp(-x)). 

We propose - as another possible distance metric - the distance between the centers of mass of 
the planar region defined by the membership functions of fuzzy sets A and B. Therefore: 

22 )()(),( AGBGAGBG yyxxBAd −+−= ,       (8) 

where: 
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Pearson’s distance (d), based on the correlation coefficient of two vectors (r), frequently used 
in image processing, might be another candidate (d=1-r). An open problem, at least for us, is the 
following: could be defined a contradiction degree between two CNF fuzzy rules having antecedent 
vectors that have common elements but are not identical? 

In [4] it is proposed a set of fuzzy rules – implementing a speculative superscalar 
microprocessor design ontology - presented below: 

• IF Number_of_Physical_Register_Sets IS small/big THEN Decode/Issue/Commit_Width 
IS small/big;   2 rules! 

• IF SLVP_Size IS small/big THEN L1_Data_Cache IS big/small;  2 rules! 

• IF SLVP_N IS small AND SLVP_Assoc IS small THEN SLVP_Size IS big 

Due to some apriori feelings related to possible high degrees of contradiction, the authors 
avoid other possible (feasible) rules like: 

• IF SLVP_N IS big AND SLVP_Assoc IS big THEN SLVP_Size IS big; it seems to make 
sense. 

or 

• IF SLVP_N IS small AND SLVP_Assoc IS big THEN SLVP_Size IS medium 

These rules - acting as a Computer Architecture domain ontology - are integrated in their 
Framework for Automatic Design Space Exploration (FADSE, see 
http://code.google.com/p/fadse/) in order to develop hardware-software multi-objective 
optimizations for some advanced computing systems. More precisely, for example the bit flip 
mutation operator was extended to stochastically take into consideration the information provided 
by the outputs of the fuzzy rules after a fuzzification – inference – defuzzification process. Thus, 
the fuzzy logic rules are integrated into the genetic operators of their state of the art implemented 
evolutionary multi-objective optimization algorithms, with significant benefits in the algorithms’ 
convergence speed and in the obtained solutions’ quality, too [4, 5]. 

In fuzzy logic material implication (IF/THEN) has many definitions (Zadeh, Lukasiewicz, 
Mamdani, Reichenbach formulas are some of the most frequently used). The „best” fuzzy logic 
implication form is problem-dependent. An interesting open question might be: what is the best 
(most effective) fuzzy implication form for a certain application? 
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3. Conclusion 

Computing the contradiction degrees for the presented set of fuzzy logic rules, starting from the 
presented approach – and using the corresponding concrete defined membership functions - would 
be helpful in order to avoid solutions quality degradation due to these (possible too contradictory) 
rules. Also, we need in our further developed mono-core and multi-core domain ontologies 
(example: for Sniper multicore simulator) to be sure that the contradiction degrees in a complex set 
of fuzzy rules are quite “acceptable” in order to maintain the optimization effectiveness. Finding 
some thresholds for acceptable degrees of contradiction is problem dependent. Finally, an optimal 
set of such fuzzy rules, for a certain optimization problem, is envisaged. More general, developing 
a software tool capable to automatically calculate the contradiction degrees of a set of (CNF) fuzzy 
rules - using different approaches, including those presented above - would be of interest, too. 
Particularly we are interested to develop and integrate such a tool in our Framework for Automatic 
Design Space Exploration in order to improve the optimization process through an adequate set of 
fuzzy logic rules that are implementing a Computer Architecture domain ontology. 
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