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Abstract: Chaos theory is a branch of mathematics focusing on nonlinear dynamic systems. As a relatively 

new field with a significant applicability area, chaos theory is an active research area involving many diffe-

rent disciplines (mathematics, topology, physics, social systems, population modeling, biology, meteorology, 

astrophysics, information theory, computational neuroscience, cryptography, robotics etc.). The availability 

of cheaper and more powerful computers has made a major contribution to the achievement of major advan-

ces in nonlinear dynamic systems theory, the interest in deterministic chaos has increased enormously, being 

reflected in both literature and real life. 
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Teoria haosului, o abordare modernă a sistemelor 

dinamice neliniare 
 

Rezumat: Teoria haosului este o ramură a matematicii care se ocupă de sisteme dinamice neliniare. Domeniu 

relativ nou, cu o plajă semnificativă de aplicabilitate, teoria haosului reprezintă o zonă activă de cercetare, 

care implică multe discipline diferite (matematică, topologie, fizică, sisteme sociale, modelare populațională, 

biologie, meteorologie, astrofizică, teoria informațiilor, neuroștiințe computaționale, criptografie, robotică 

etc.). Disponibilitatea calculatoarelor mai ieftine și mai puternice a contribuit esențial la înregistrarea de 

progrese majore în teoria sistemelor dinamice neliniare, interesul pentru haosul determinist a crescut enorm, 

aspect reflectat atât în literatura de specialitate, cât și în viața reală. 

 

Cuvinte cheie: haos, determinism, sistem dinamic, spațiul fazelor, atractor, fractal. 

Introduction 

Most data analysis methods use linear models that are based on relationships described by 

linear differential equations because they are easy to manipulate and usually give unique solutions. 

However, nonlinear behavior occurs frequently in real-life systems due to their complex dynamic 

nature. This cannot be adequately described by linear models; the use of chaotic systems is an 

appropriate solution. 
 

A system is a set of components that interact and form a whole; nonlinearity means that due 

to feedback or multiplicative effects between components, the whole becomes more than the sum 

of the individual parts. Finally, the dynamic term refers to the fact that the system changes over 

time depending on its state at some point in time. 
 

In nonlinear systems, the relationship between cause and effect is not proportional and 

determined, but rather vague and difficult to discern. Nonlinear systems can be characterized by 

periods of both linear and nonlinear interactions between variables. Thus, dynamic behavior can 

reveal linear continuity over certain periods of time, while relationships between variables can 

change, resulting in dramatic structural and behavioral changes in other periods. The dramatic 

change from a qualitative behavior to another is called "bifurcation." 
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Chaotic systems are a simple subtype of nonlinear dynamic systems. They can contain very 

few interactive parts and they can follow very simple rules, but all these systems have a very 

sensitive dependence on the initial conditions. Despite their deterministic simplicity, these systems 

can produce a completely unpredictable and chaotic behavior over time. Studies on nonlinear 

systems highlight three types of temporal behavior: (1) stable behavior (mathematical equilibrium 

or fixed point); (2) oscillation between mathematical points in a stable, smooth and periodical 

manner; (3) seemingly random behavior, lacking model (or non-periodic behavior) dominated by 

uncertainty and in which predictability decomposes. These behaviors may occur intermittently 

throughout the "life" of a non-linear system. A regime can dominate at certain times, while other 

regimes dominate at other times [21]. These characteristics determine a variety of behaviors that 

represent the dynamics of nonlinear systems. 

Short history 

The roots of the chaos theory date back to 1890, in Henri Poincaré's studies on the problem 

of the movement of three objects in the mutual gravitational attraction, the so-called three-body 

problem [17]. In 1898, Jacques Hadamard noted the general divergence of trajectories in negative 

curvature [10], and Pierre Duhem studied the possible general significance of this in 1908 [3]. 
 

In the 1930s, the theory of dynamic systems began to provide characterizations of possible 

forms of behavior in differential equations. G. D. Birkhoff, A.N. Kolmogorov, M.L. Cartwright, 

J.E. Littlewood and Stephen Smale have conducted studies on nonlinear differential equations. In 

the early 1940s, Mary Cartwright and John Littlewood noted that van der Pol’s equation could 

present sensitive solutions to all figures under its initial conditions. 
 

The theory of chaos progressed more rapidly after the middle of the century, when it became 

apparent to some scientists that linear theory - the systemic theory that was dominant at that time - 

simply could not explain the observed behavior of experiments such as the logistic map. 
 

The main catalyst for the development of chaos theory was the electronic computer. A first 

pioneer of the theory was Edward Lorenz, whose interest in chaos accidentally appeared in his 

1961 predictive work [14]. At the end of the 1960s simulations of differential equations with 

complicated behavior were made, first on analog computers and later on digital computers. 
 

Then, in the mid-1970s, studies of iterative maps with dependence sensitive to initial 

conditions became commonplace. Robert Shaw's activity at the end of the 1970s clarified the 

connections between the informational content of the initial conditions and the apparent character 

of the behavior.  
 

In the early 1980s, indirect signs of chaos were observed in the laboratory in a variety of 

systems, including electric circuits, lasers, oscillatory chemical reactions, fluid dynamics, and 

mechanical and magnetomechanical devices, as well as computerized models of chaotic processes. 

In 1975, the term "chaos" was introduced by T. Li and J. York in scientific discussions and 

publications, and in December 1977 the Academy of Sciences of New York organized the first 

symposium on chaos. 
 

In 1982, Mandelbrot published "Fractal Geometry of Nature," which became a classical of 

the chaos theory ([15]). In 1987, James Gleick published "Chaos: Making a New Science" ([5]), 

which became a best-seller and introduced the general principles of chaos theory and its history to 

the general public. 
 

In recent years, major advances have been made in the theory of non-linear dynamic systems, 

the interest in deterministic chaos has increased enormously, reflected in both literature and real 

life, and supported by the development of computers. 
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Description of chaotic behavior 

According to Ruelle [18], the first characteristic of the chaotic system is "extreme sensitivity 

to the initial conditions" and the second, according to James [11], is the existence of "complicated 

models of nonlinear relationships... which are not really random." In chaotic systems, "minor 

experiences of individuals can lead to unpredictable changes in the world". 
 

The fundamental properties inherent to the definition of "chaos" are: 

(1) non-linear interdependence; 

(2) determinism and "hidden" order; 

(3) sensitivity to initial conditions. 
 

For any linear system in which the variables are time independent, in the absence of an 

external drive force, there is a special solution called the fixed point. In the case of dissipative 

systems that are subject to external processes, the notion of fixed point must be generalized to 

include permanent or repeated movements on a regular basis. These trajectories are called limit 

cycles and, as well as fixed points, may be stable or unstable. 

Fixed points and limit cycles are called attractors, the trajectories in the state space conver-

ging towards them and then remaining very close to them over long periods of time. If a system 

begins to be observed when it is far from its attractor and is supervised for a long time, it will be 

possible to detect its movement to the attractor for a while, but from a certain point it will be so 

close to attractor so that no difference will be noticed. The part of the trajectory along which progress 

towards the attractor can be observed is called the transient. The set of points in the states space on 

the transients associated with a particular attractor is called the attractor pool of the attractor. In a 

stable linear system, all points in the states space are in the same attraction pool (for any initial system 

variable configuration, the system’s final behavior is the same fixed point or limit cycle). 

On the other hand, a nonlinear system can contain more attractors, each with its own 

attraction pool. Thus, the behavior of a non-linear dynamic system may depend on its initial state, 

but also on a complete set of phenomena associated with the way the attraction pools change over 

the variance of the parameters. 

In nonlinear systems the differences caused by different initial conditions in this case are not 

limited to transient effects. This phenomenon of bistability is a generic feature of nonlinear 

dynamics, showing that  nonlinearities play a fundamental role in real systems function. 

A generalized feature associated with bistability is hysteresis (the dependence of the solu-

tion observed by the direction in which a parameter varies). The jump to a different solution in a 

hysterical system is an example of bifurcation. Generally, bifurcation theory describes the 

transitions that occur between different structural solutions when the system parameter is varied. 

Such transitions may correspond to the creation or destruction of fixed point elements or simply to 

changes in the stability properties of existing fixed points. 

Nonlinearity can also generate a completely new type of attractor. In nonlinear systems, limit 

cycles can be quite complicated by cycling in a bounded region of the states space several times 

before finally closing themselves. It is even possible that a trajectory to be limited to a region of the 

states space where there are no stable limit cycles or fixed points. The system seems to follow an 

irregular trajectory that is said to be on a strange attractor. The trajectory comes arbitrarily close 

to its closure itself, but never completely. A strange attractor is the structure of the associated states 

space specific to the chaotic systems.  

In spatial extended systems, non-linearities can generate patterns formation (the sponta-

neous formation of non-trivial spatial attractors in a system without external inhomogeneities) 

([4],[16]). 
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Elements used in chaos theory 

In order to highlight the presence of deterministic chaos in the dynamics of the physical data 

time series, the following elements are mainly used [1]: 

 the power spectrum 

 the correlation dimension 

 the Lyapunov exponent 

 entropy 

 

The power spectrum 
  

For the deduction of the power spectrum, the fast Fourier transform of the time series data is 

used and power (the average square amplitude) is represented as a function of frequency [22]. The 

power spectrum is used to qualify the chaotic or quasi-periodic dynamics of the periodic one, and 

to highlight the periodicities of the processes that determined the time series. A chaotic series is 

characterized by a broadband spectrum with apparent continuity. The existence of broadband spec-

trum is only a necessary condition for chaos because quasi-periodic or periodic noise signals can 

produce the same kind of power spectrum. Therefore, in order to verify the existence of determi-

nistic chaos in a series of time, it is necessary to calculate the correlation dimension and the 

Lyapunov exponents. 

 

Correlation dimension 

 
In the theory of dynamic systems, it is demonstrated that a m-dimensional phases space can 

be properly reconstructed from a time series, considering the original series  and the delayed 

(deviated) values  as the coordinates of a time series 

vector: 

 , 

where m is the size of vector , also called the sinking size of the attractor, and  is the delay time. 

If  is chosen so that the values  are not correlated, then 

will be independent, which represents the condition of 

definition for the phases space. 

In calculations, it is usually chosen the value  of the delay time for which the auto-

correlation function decreases to . Other choices of the value of  are based on the first value at 

which the autocorrelation function or its first inflection point is canceled [23]. 

Having established the phase reconstruction procedure, it is possible to define the correlation 

integral, according to the Grassberger & Procaccia algorithm [6], as follows: 

 

where  is the total number of observations,  is the Heaviside function, and the distance between 

points is given by the Euclidean norm:  

 

The correlation integal describes the average number of points that are in a volume element 

of the m-dimensional space or the sphere of radius r that surrounds each individual state or point on 

the trajectory   on the attractor. 
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The correlation dimension is defined by the relationship [22]: 

 

Since the attractor’s size is unknown a priori, d is calculated for increasing values of m. 

When d reaches a value D independent of m, this value is the attractor’s correlation size. The M 

dimension beyond which d is no longer varied is the (minimal) sinking magnitude of the attractor. 

The immediate superior integer value of the correlation dimension D indicates the minimum 

number of independent variables required to describe the evolution in time of the system that 

generated that time series. 2 1D  indicates the sufficient number of independent variables for 

modeling the dynamics of the physical system. A fractional value of the dimension D characterizes 

the chaotic behavior of the dynamic system with dependence sensitive to the initial conditions. 

 

The Lyapunov exponent 

 

The Lyapunov exponent, , is a measure of the sensitivity of the dynamic system to the 

initial conditions. There is a spectrum of Lyapunov exponents; their number is equal to the size of 

the phase space. If the system is chaotic, there will be at least one positive Lyapunov exponent. 

Let  be two points in the phase space, corresponding to two different initial 

conditions, having the distance  between them at a given time: 

 

After a time corresponding to the number  of points in the phase space, the distance 

between the two considered trajectories becomes: 

 

The maximum Lyapunov exponent is defined by the relationship [12]: 

 

If  is positive, the two trajectories diverge exponentially, which implies the existence of 

chaos, thus the lack of predictability of the future states of the system. 

The maximum Lyapunov exponent determines the predictability of the system as the 

exponential growth of errors caused by it dims the effects of other exponents equal to zero or 

negative. 

 

Entropy 

 
The Kolmogorov entropy, K, is the most important dimension that can characterize the 

deterministic chaotic dynamics of a dynamic system. The practical calculation of entropy for a time 

series of values can be done by two procedures:  

 the sum of the positive Lyapunov exponents of an attractor is equal to the dynamic 

system entropy,   

 if the correlation dimension is saturated, then for m large enough ( ) entropy can 

be calculated using the relationship [24]:  

 

 
1

ln
m

m n

C r
K

n C r 

  

where r must be in the linear field of the graph  as a function of . 
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Entropy measures the average rate of time loss of system status information. Entropy 

inversion provides the timeframe on which a deterministic prediction of a chaotic system can be 

made. A strange attractor is characterized by a positive value of entropy.  

The error doubling period, T, is defined by the relationship:  

ln 2
T

K
  

T is considered the timeframe on which deterministic prediction can be made, beyond which 

only statistical predictions can be made. 

 

Applications 
 

The theory of chaos is a very vast field, much of it being developed as pure mathematics and 

not necessarily designed to have practical applications. This category includes fractal art, the 

"public face" of the theory of chaos. But there have also been practical developments that, 

unfortunately, remain relatively unknown hidden in the shadow of mathematical evolutions, such 

as the Mandelbrot sets. 

In reality, the theory of chaos has much to offer in the field of practical application. The key 

to unlocking the power of chaos theory in terms of practical issues is its statistical part. Statistical 

models developed using the theory of chaos are known as non-linear statistical methods. These 

methods are particularly powerful because they are qualitative rather than quantitative. Quantitative 

statistical methods, using such values as standard averages and deviations, do not directly compare 

all data, but only a small derivative set. 

In terms of quantitative methods, it is not unusual for a large collection of data to be reduced 

to just two numbers as a mean and standard deviation. While this can provide useful information, it 

loses most of the information in this process. On the other hand, qualitative methods can maintain 

significantly more information by forming patterns that have data almost as important as the 

original set. 

Applications in experimental sciences  

Chaotic dynamics have been observed in a wide variety of experiments in fields such as 

chemistry, physics, meteorology, hydrology, medicine and biology ([13],[19],[8]). Some of these 

studies are famous and illustrate the theory. These refer to attractor detection and bifurcation theory 

with Lyapunov exponent calculation. These works are based on well-known chaotic systems such 

as the Lorenz, Rössler, Hénon, Chua and Mackey Glass systems. Such models, for example, can 

explain the behavior of resistance in physics, the water level of a river in hydrology, population 
growth in ecology, fish flow in fisheries research, or temperature evolution. 

Applications in social sciences  

Analysis of the individuals behavior also depends on complex models, "closed" models; 

researchers are interested in knowing their asymptotic behavior. Taking into account, for example, 

the organization of a market from a social behavior point of view, it is assumed in the theory of 

balance that the agents have full knowledge of the market. But, in fact, any agent has incomplete 

knowledge of the market. This knowledge comes from empirical observations, from which agents 

learn and then make some decisions. Self-regulation can be interpreted in terms of attractor, but no 

chaotic analytical model corresponds a priori to this. However, this idea has been developed in 

social sciences based mainly on behavioral investigations. 

Applications in economy  

Macro-economists have long realized that a certain class of non-linear deterministic systems 

has been able to produce a self-sustained fluctuation without shocks from outside models. A series 
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of studies has developed numerous examples of deterministic economic models that could generate 

non-periodic fluctuations. Chaos routes may appear in traditional models of expectation, such as 

the spider model and asset pricing model by introducing heterogeneous views. 

Applications in finance  

In [7] it has been shown that some models used in the economy can produce either stable 

solutions or complex solutions, including a "chaotic" solution. As a result of these ideas, an active 

research program focused on highlighting chaos as the source of business cycles [20]. In the same 

way, studies have been developed to understand the dynamics of the labor market or agents’ 

behavior in the markets, using share prices and exchange rates, although attractors’ detection is 

difficult due to the presence of measurement noise [9]. Otherwise, in order to predict data sets 

whose dynamics seemed complex, attractors’ detection was taken into account after deconvolution 

using wavelets. Chaos in the financial market is discussed in [2]. 

Conclusions  

A chaotic system has three simple features: it is deterministic (it has a determinant equation 

that governs its behavior); it is sensitive to the initial conditions (even a very small change of the 

starting point can lead to major changes of the deterministic trajectory); it is neither random nor 

disordered.  

All chaotic systems are nonlinear and involve certain iterative rules. Numerical analysis is 

usually the only possibility of analyzing such systems. Depending on the initial value of the control 

parameter, the system can evolve to stable, constant or periodic orbits, or to non-periodic, or 

chaotic orbits.  

In the next phase of the research the focus will be set to identify and investigate the three-

dimensional systems Lorentz, Rössler, Chen, Lu, the main algorithms used in the theory of chaos, 

comparisons between classical deterministic-stochastic methods and methods based on the theory 

of self-organizing the chaos. A number of applications will be built in order to illustrate the 

modeling, controlling and synchronization of a chaotic system, including  acquisition of signals 

from the studied process and formation of a time series, analysis of Lyapunov coefficients and their 

processing, attractors’ detection, drawing bifurcation diagrams for the analysis of possibilities to 

stabilize the system.  
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