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Abstract: Implementation of the “Selective Inhibition type of Sintering (SIS)” method in the field of additive 

manufacturing, which develops the components by building layers, depends upon the proper selection of their 

optimum input attributes. Components manufacturing as per anticipated size is accomplished by the 

optimization of factors, namely, heater power (H), layer height (L), the feed rate of the heater (F) and roller 

(R), and support’s temperature (S) using “Multi-Response Particle Swarm Optimization (MRPSO)”. Analysis 

of variance was employed to substantiate the competence of the established models. Trials have shown that 

mechanical properties of manufactured components are characterized by Design of experiments in a direct 

relationship with F and R, but inversely related to H and L. Finally, unique MRPSO algorithm has been 

employed for parallel optimization of multiple outputs. Introduced mutation functions (of genetic algorithm) 

into MRPSO algorithm to prevent early convergence. Optimal-solutions of Pareto-front achieved by MRPSO 

were graded by the compound grades (resulting from maximum deviation theory) to increase preciseness in 

making the decisions. The MRPSO analysis offered valuable information for monitoring the factors to 

improve the accuracy of SIS components. Massive optimal-solution data have been generated for every 

possible combination of factors to maximize the responses. 

Keywords: Selective Inhibition Sintering; Multi-objective Optimization; ANOVA; Mechanical Properties; 

Additive Manufacturing; MOPSO. 

1. Introduction 

Innovative manufacturing processes undergo many phases, like innovating a product with an 

object, qualifying refined idea and designing advanced manufacturing methods. But 3rd phase 

involves producing intricately shaped parts using “Rapid Prototyping (RPT)” from CAD source 

files because of its broader application in automotive, biomedical, and aircraft industries for 

developing operational, trial product and intangible parts. Also, RPT builds complex configurations 

without using tools and reducing production preparedness time equal to 60% contrasted to existing 

methods (Hilton et al., 2000). Classification of RPT depends on the processing of materials like 

“Stereo-Lithography (SLA)”, “Fused Deposition Modeling (FDM)”, and “Laminated Object 

Modeling (LOM)” for liquid resin, solid filament, sheet form etc., respectively (Mahapatra et al., 

2012). “Selective Laser Sintering (SLS)” is one of the current developments of RPT for powder 

form of materials to produce in large quantity production using high-intensity lasers. High-intensity 

lasers in production system turn into a costly process, and high-speed sintering process is 

introduced to eliminate the laser sintering process (Rouholamin et al., 2016). To eliminate laser 

heating, a unique RPT process employing the infrared heating process for sintering powders called 

as “Selective Inhibition Sintering (SIS)”. But attaining higher accuracy with minimal wastage 

would become the uncertainty feature influencing SIS survival. Laser sintered are affected by CO2 

to sinter at anticipated layers (Gibson et al., 1997). SIS is applied on selected thin polymer layers 

formed by powder and wetted by inhibition liquid on boundaries of the surface such that sintered 

polymer within and next to the boundaries supports the construction. SIS has shown extensive 

advantages compared with other methods of the RPT technology such as the abolition of costly 

heating methods, backing material, tooling arrangement, and is cost-effective in handling various 

powder materials. Disadvantages of SIS, as a complex process, are requiring high strength and 

excellent surface quality and geometrical accuracy, which involves being accustomed to working 

factors and manipulating the strength. SIS method is based on the various interdepended factors, in 

which some are independent. The component strength based on factors like tessellated model 

accuracy, the algorithm for slicing, equipment resolution, and powder grains geometry, etc. 
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(Khoshnevis et al., 2003) was noticed. These factors correspondingly lead to advanced input 

variables like layer thickness, heater power, and heater feed rate. Using these variables, 

optimization of “Mechanical Output Characteristics (MOC)” using “Response Surface 

Methodology (RSM)” has been investigated. Moreover, RSM also evaluated the significance of 

factors on accuracy. The results were validated to qualify the production of parts with acceptable 

strength (Baligidad et al., 2018). The work extended using two more factors apart from the above, 

such as roller feed rate and bed temperature, for optimization of parameters on MOC to produce 

components with anticipated dimensions using the RSM approach. A face-centered composite 

block design was utilized to prepare the experimentation plan with three leveled factors of the 

“Polyamide (PA12)” substance for an innovative SIS technique. Then, verified the fitness of 

generated models using “Analysis of Variance (ANOVA)”. The microstructure was also used to 

validate the surface texture in collaboration with sensitivity analysis to assess the factor's effect on 

MOC at optimal conditions (Baligidad et al., 2019). Making the SIS is an evolving process 

demands lots of developments in other fields. Accurate dimensions of components and strength 

mainly depend on particle shape, size, and packing density, which are major concerns of most of 

the present RP technology.  

Literature analysis of SIS technology shows that this field is hardly studied. Only a few 

studies like  RSM investigated the impact of input variables on “Mechanical Properties (MP)”, 

without even taking the weightage of one response on the others in multi-response optimization. 

Optimal values of input variables and regression models were obtained. These models’ accuracy 

level was deficient as it does not take process non-linearities and modeling difficulties when 

compared with the accuracy level of experimental results. To increase the accuracy level and to 

have many optimal conditions of inputs for varying weights of responses, “Particle Swarm 

Optimization (PSO)” analysis has been studied for the MPs (storage and loss modulus and Tan δ) 

of components produced from SIS process. Multi-objective optimization is considered for the six 

inputs or variables. Multi optimal values of six parameters have been suggested for the designers to 

use as a reference guide at higher accuracy level more than Genetic algorithms and other methods. 

2. Methods and materials 

Nylon 12 or PA12 powder having a grain size of 110 μm is widely accepted universal plastic 

having additive production applications because of its durability, ultimate strength, shock strength, 

and withstand fracture by stretching itself. By removing the moisture content (heating in glycerol 

up to 120°C for one hour), grain uniformity will be improved. To produce components, we need to 

select a suitable inhibit solution (potassium iodide + isopropyl alcohol + water) to accelerate the 

sintering effect and employ it as an inhibitor in the SIS process. The SIS process is studied by a 

plan of experimental runs for multi-object optimization that should not be repetitive, time 

intervening, and costly. Therefore, input variables of the SIS process that play a key role in the 

component quality and accuracy are selected before ensuing running of experimental trials. From 

the previous work, operating input factors like heater power (H), heater feed rate (F), layer height 

(L), roller feed rate (R), and bed/support temperature (B) are freely controllable such that they 

influence directly the MOC of the SIS produced components. Also, their ranges of operation with 

the designer decision are tabulated in the Table 1. H and B attribute ranges are adopted using the 

thermic property of substances dealt with. R and F attributes also impact the precision and trigger 

the non-uniform sintering. Experiments conducted to investigate the strength must  be large in 

number such that one factor varies, keeping other factor values constant.  

Table 1. Working factors of SIS and their range 

Varying factors Units Values Fixed factors Units Values 

Heating power (H)  Watts 25, 35, 45 Printer feed rate m/s 0.03 

Layer height (L)  mm 0.2, 0.3, 0.4 Printer frequency Hz 400 

Heater/ Furnace feed rate (F)  mm/s 6, 8, 10 Printer pressure Bar 0.5 

Roller feed rate (R)  mm/s 170, 210, 250 - - - 

Bed/support temperature (B)  °C 80, 100 - - - 

When the number of factors affecting the multiple outputs is bigger,  the experiment work 
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has to be increased to cover the effect of every factor level on each output in the traditional 

techniques. So, a large number of tests are conducted to include most possible combination of input 

factors. Sometimes it becomes cumbersome to conduct vast trial runs bearing in mind the period 

and expenditure used during execution of experiments. For such instances, orthogonal matrix-based 

experimental planning suggested by Taguchi, taking all factor combinations and their levels for 

every experiment are recommended (Yunus et al., 2016). Taguchi Design employs various design 

approaches of system, parametric, and tolerance type. By employing RSM, a multi-response opti-

mization technique was performed to choose the level of factors in the grinding process (Yunus et 

al., 2020). The correctness and proficiency of an SIS process depend on the suitable implemen-

tation of the trial strategy and the adoption of their procedures. In this work, a quadratic regression 

considering the linear, square, and interaction of factors using ANOVA is applied to convert 

responses into empirical models of the SIS process (Montgomery et al., 2019), (Myers et al., 2016). 

Furthermore, The Central Composite Design of RSM is employed, and optimization carried 

out. RSM proved a suitable approach by increasing efficiency and product superiority to a certain 

extent (Aldahdooh et al., 2013), (Acherjee et al., 2012), (Balachandran et al., 2012). Maximum one 

level of each parameter is obtained corresponding optimum condition, and without taking the role 

of increasing or decreasing the significance of responses on each other as well as a range of opti-

mum factors level is difficult to get under varying requirements of industries. Therefore, we use the 

above models from ANOVA as objective functions in the PSO algorithm to obtain a range of opti-

mal values of each parameter using evolving methods to a very accuracy level where the RSM 

method can never reach. PSO handle easily the factors and their levels without exact range using its 

natural algorithms but they are keenly selected (refer Table 1.). Factors without proper range is not 

possible by RSM for examining the MOC in sintering of specimens. In this approach, experiment work 

generated for five-factor level by grouping as per the “Orthogonal-matrix (OA)” of Taguchi design to 

examine their effect on shrinkage of components. Table L60 OA is selected for the present study. 

2.1. Mechanical Properties using Dynamic Mechanical Analysis  

Specimens made up of Nylon 12 powder with inhibitor solution for the above analysis 

keeping with standards of ASTM D638 (dimension of 13 × 3.2 × 60 mm) were prepared. Firstly, 

3D model of sample is imported in STL format and split into many segments for defining contour 

profile by processing software of machine. It fecilitates the inhibitor solution nozzle is placed on 

those split regions to avoid shrinkage factor at different scale and prepares samples at different 

combination level of SIS factors. The “Dynamic Mechanical Analysis (DMA)” investigates the 

different behavior of polymers, namely structural “Storage Modulus (SM)” and visco-elastical  

“Loss Modulus (LM)” at a fixed frequency of 1 Hz using a three-point bending type test, the 

average values of moduli are noted down. Totally, 60 tests for various design factors (consisting of 

one categorical and four contributing factors) with various permutations were accomplished and 

displayed in Table 2. 

Three MP in this study were measured namely, storage modulus (measures load-bearing 

capacity representing structural elastic strength behavior), loss modulus (heat energy dissipation/ 

cycle representing viscous behavior) and tan δ ( measures frequency of load absorbing capacity 

under varying temperature and is defined by percentage of loss modulus from storage modulus). 

Using ANOVA, every permissible grouping of factors was linked to responses obtained from 

experimental values in a mathematical form. In this approach, second-order (quadratic type) 

regression relationship mathematic models for the experimental outputs were generated, to evaluate 

the impact of factors on the MP in polynomial form as follows: 

SM =a0+a1(H)+a2(L)+a3(F)+a4R+a5(B)+a11(H2)+a22(L2)+a33(F2)+a44(R2)+a55(B2)+a12(HL)+a13(HF)+ 

a14(HR)+a15(HB)+a23(LF)+a24(LR)+a25(HB)+ a34(FR)+ a35(FB)+ a45(RB) 
(1) 

 

LM =b0+b1(H)+b2(L)+b3(F)+b4R+b5(B)+b11(H2)+b22(L2)+b33(F2)+b44(R2)+b55(B2)+b12(HL)+b13(HF)+ 

b14(HR)+b15(HB)+b23(LF)+b24(LR)+b25(HB)+ b34(FR)+ b35(FB)+ b45(RB) 
(2) 

 

Tanδ = c0+c1(H)+c2(L)+c3(F)+c4R+ c5(B)+ c11(H2)+c22(L2)+ c33(F2)+c44(R2)+c55(B2)+ c12(HL)+c13(HF)+ 

c14(HR)+c15(HB)+c23(LF)+c24(LR)+c25(HB)+ c34(FR)+ c35(FB)+ c45(RB) 

      
(3) 
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where a0, b0 and c0 are the average values of the corresponding outputs, and a1 to a45, b1 to b45 and 

c1 to c45 represents the coefficients depends on single, square, as well as the interactive effects of 

factors of Equation (1) to Equation (3) respectively.  

Table 2. Data collected as per the L60 orthogonal design matrix of the Taguchi method 

Runs H L F R B SM (Pa) LM (Pa) Tanδ 

1 45 0.4 10 170 100 7030210000 780176100 0.110975 

2 35 0.3 10 210 100 8207210000 879681000 0.107184 

3 45 0.3 8 210 100 9384210000 1080132900 0.115101 

4 25 0.4 6 170 80 2399210000 152862600 0.063714 

5 25 0.4 6 250 80 7041210000 837860100 0.118994 

6 35 0.3 8 210 100 10099210000 1129164300 0.111807 

7 25 0.4 10 170 100 6909210000 788828700 0.114171 

8 35 0.2 8 210 100 5083210000 501850800 0.098727 

9 45 0.4 10 250 100 6843210000 709513200 0.103681 

10 45 0.3 8 210 80 6282210000 693650100 0.110415 

11 45 0.4 6 170 80 7954210000 850839000 0.106967 

12 45 0.2 10 170 80 5842210000 615776700 0.105401 

13 25 0.2 6 250 100 6106210000 646060800 0.105804 

14 45 0.2 6 170 80 8757210000 933038700 0.106545 

15 25 0.4 10 170 80 7976210000 888333600 0.111373 

16 35 0.3 8 210 100 3928210000 395135400 0.100589 

17 35 0.3 8 210 80 9197210000 971975400 0.105682 

18 25 0.2 10 170 80 4379210000 460029900 0.105049 

19 45 0.2 6 250 80 6480210000 670576500 0.103481 

20 45 0.2 6 250 100 7327210000 728260500 0.099391 

21 35 0.3 8 210 80 7096210000 807576000 0.113804 

22 35 0.3 8 170 100 3609210000 327356700 0.0907 

23 45 0.4 10 250 80 6436210000 654713400 0.101723 

24 25 0.4 6 170 100 7558210000 836418000 0.110664 

25 45 0.4 10 170 80 5413210000 622987200 0.115086 

26 35 0.3 8 210 80 10693210000 1217132400 0.113823 

27 35 0.3 10 210 80 5083210000 585492600 0.115182 

28 35 0.3 6 210 80 8119210000 879681000 0.108346 

29 25 0.4 6 250 100 7976210000 899870400 0.112819 

30 45 0.2 6 170 100 10330210000 1121953800 0.108609 

31 35 0.3 8 250 80 6568210000 679805940 0.103499 

32 35 0.3 8 210 80 7954210000 888333600 0.111681 

33 35 0.3 8 210 80 2729210000 269672700 0.09881 

34 45 0.4 6 250 80 6381210000 702302700 0.110058 

35 35 0.2 8 210 80 8251210000 925828200 0.112205 

36 25 0.3 8 210 80 7712210000 915733500 0.118738 

37 25 0.2 6 250 80 8427210000 951786000 0.112942 

38 45 0.2 10 170 100 7338210000 755660400 0.102976 

39 25 0.2 6 170 100 5842210000 641734500 0.109844 

40 35 0.3 8 210 100 9604210000 1044080400 0.108711 

41 25 0.2 10 250 100 6139210000 657597600 0.107114 

42 35 0.3 8 210 100 8581210000 911407200 0.10621 

43 35 0.3 8 210 100 11034210000 1166658900 0.105731 

44 35 0.3 8 210 80 7250210000 754218300 0.104027 

45 45 0.2 10 250 100 8152210000 853723200 0.104723 

46 25 0.2 10 250 80 7976210000 798923400 0.100163 

47 35 0.3 8 250 100 8185210000 866702100 0.105886 

48 45 0.4 6 170 100 7360210000 806133900 0.109526 

49 25 0.2 10 170 100 6887210000 798923400 0.116001 

50 35 0.4 8 210 100 10902210000 1243090200 0.114022 

51 45 0.2 10 250 80 8669210000 1009470000 0.116443 

52 25 0.3 8 210 100 3477210000 379272300 0.109074 

53 35 0.4 8 210 80 7789210000 847954800 0.108863 

54 25 0.4 10 250 100 4181210000 438398400 0.10485 

55 45 0.4 6 250 100 8515210000 956112300 0.112283 

56 25 0.2 6 170 80 4291210000 490314000 0.11426 

57 25 0.4 10 250 80 7019210000 797481300 0.113614 

58 35 0.3 8 210 100 6238210000 618660900 0.099173 

59 35 0.3 6 210 100 5479210000 536461200 0.097908 

60 35 0.3 8 170 80 8306210000 912849300 0.1099 
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2.2. Particle Swarm Optimization 

PSO algorithm principally presented a natural evolution evaluation technique using a 

population inspired from the bird's flock and fish behavior by Kennedy and Eberhart in 1995. It 

involves a simple concept, easy to develop, and quick to converge. Therefore, PSO is gaining 

considerable popularity and has widespread applications, including job forecasting, electrical 

control, vibration system, supply chain system, automobile routing, and components replacing 

check difficulties (Wu et al.,2008), (Mohanty et al., 2016). PSO is initiated with the random sized 

population and appropriate range of bound values of factors (refer Figure 1.). After evaluating the 

fitness function, the PSO procedure reiterates the subsequent steps repetitively (Gibson et al.,1997): 

 
Figure 1.  Steps of PSO process 

vi(t+1) = wvi(t) + c1rand1(Pbesti – xi(t)) + c2rand2(Gbesti – xi(t))              (4) 

xi(t+1) = xi(t) + vi(t+1)                   (5) 

where vi(t) and xi(t) are the velocity and position of an element i at iteration t; Pbesti and Gbesti are the 

personal and global best of particle i; rand indicates the random number (0 to 1); w is the weighting 

function; c1 and c2 are the cognition and social learning rates; respectively. In the fitness function 

approach, Pbest and Gbest are the personal and general best in each iteration and the group among all 

personal bests, respectively. 

2.3. Proposed Multi-Response Particle Swarm Optimization Algorithm 

Present-day problems comprise parallel optimization of various objectives/responses, which 

are either conflicting or contradicting nature demands “Multi-Response Optimization (MRO)” in 

most of the applications when responses are two or more. The PSO can also be employed for 

cracking the MRO problems known as the “Multi-Response Particle Swarm Optimization 

(MRPSO)” (Tripathi et al.,2007). When every response is considered together, the outcomes are 

optimum as no supplementary solution within the track region. It means these types of results are 

outstandingly good to other solutions within track space called as “Pareto-Optimal Solutions 

(POS)”. The illustration of effective set obtained in the demonstrable space is called a “Non-

Dominated (ND)” set because every solution leads the other. ND is identified by comparing and 

checking the conditions given below. A minimization problem for two objectives can be checked 

using Equations (6) to (7):  

Objective1[k] > Objetive1[n] and Objective2[k] ≥ Objective2[n]              (6) 

or       Objective1[k] ≥ Objetive1[n] and Objective2[k] > Objective2[n]              (7) 

where k and n signify output numbers from the population of two objective function values. The 

MRO has two goals, primarily to converge to the POS set, and secondly to uphold the variety and 

scatterings in solutions. 

In MRO problems, every particle has a gbest set (stored in an archive where ND solutions 

are present), but only one is chosen for updating its position. The MRO keeps the archive updated 

after every iteration, which was empty at the start and can store a maximum number of user-

defined ND solutions. “Crowding Distance (CD)” approach was broadly useful in evolutionary 

MRO algorithms for promoting multiplicity. CD measure in MROPSO to select gbest was first 

used in (Raquel et al., 2005). The highest number of generations is set as a finishing criterion. 

Typically, “Multi Factor Decision Making (MFDM/ MADM)” methods are selected to find the 
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score of the results and for choosing the finest solution, which has the highest grade. But the 

weights allocated in the MADM process to convert multiple into a single corresponding objective 

score are practically independent and influence the decision of grading the alternate results greatly. 

“Maximum-Deviation-Theory (MDT)” proposed for avoiding ambiguity of experts allocating 

weights and extracting the precise data from the available with the logic of smaller weight given to 

the responses holding analogous values than the responses holding higher changes/deviations. ND 

solutions from MROPSO are used for the decision matrix (Yingming et al., 1997). Standardization 

of every characteristics is performed for altering various scalar values and units amid several 

characteristics into a joint computable scalar value depending on “larger the better” or “smaller the 

better” using Equation (8). 
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The ND solutions attained from MROPSO algorithm will be graded by approximating the compound 

grade of every solution by accumulation of the weighted accomplishment (refer Equation (9)) of all 
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3. Result and Discussions  

Quadratic or second-order statistical models for the three responses of MP were generated by 

verifying the adequacy of the models using ANOVA. It considers the effect of interaction along 

with single, square of factors on different outputs measured by the ANOVA approach of Minitab 

software to develop mathematical relationships between various MP and factors from Tables 2. 

The R-square value of relationship models for SM, LM and Tan δ are 0.80, 0.82 and 0.85 

respectively shows the linear relationship which is agreeable and non-linear relationship of 20%, 

18%, and 15% between investigational and forecast results is disagreeable. The models for SM, 

LM, and Tan δ are expressed in Equation (10) to Equation (12), having all defined factors.  

SM=-31325231717+450366224×H-53702117599×L+2881695198×F+241089992×R-438472×B 

-4894035×H²+80309649123×L²-120288377×F²-335096×R²-249218750×H×L-14385938×H×F 

-769141×H×R+3391667×H×B-187343750×L×F-29820312×L×R+242611111×L×B-47266×F×R 

-5209722×F×B-633264×R×B                (10) 

Model-predicted for SM includes all linear, square, and interaction terms with positive and negative 

signs. Equation (10) indicates that linear terms like H, F and R along with Bed temperature, and interaction 

terms of H, B, and L have an positive impact on SM. 

LM=-4288599167+25581488×H-7353436171×L+395054038×F+36654368×R+2535733×B 

-174406×H²+9504324500×L²-16077201×F²-54975×R²-25011422×H×L-1466886×H×F 

-91596×H×R+345703×H×B-20054203×L×F-1791359×L×R+34810692×L×B-136887× 

×F×R-658960×F×B-88669×R×B                (11) 

The generated statistical model for the loss modulus (refer to equation (11)) shows that F, R, 

and B have positive and heater power and layer height have a negative effect on LM, the square 

effect of heater power has positive as well as the interaction of H, L and B factors have a positive 

effect on LM. 

Tanδ=-0.106-0.00232×H-0.380×L+0.0129×F+0.00201×R+0.00103×B+0.000056×H²+0.068×L² 

-0.000156×F²-0.000003×R²+0.00137×H×L-0.000030×H×F-0.000004×H×R-0.000011×H×B 

+0.00523×L×F+0.000423×L×R+0.00183×L×B-0.000029×F×R-0.000047×F×B-4×10-6×R×B   (12) 

Equation (12) shows that linear terms like F, R, and B and interaction terms like H as well as 

F, B, and L have a positive effect. The impact of selected SIS factors such as H, L, F, R and B on 
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dynamic MP of Nylon 12 samples depends on the understanding of P-value of ANOVA for 

designated working factors on MPs. 

Table 3. ANOVA results of Storage Modulus 

Basis 
Degree of 

Freedom 

Adjusted Sum of 

Squares 

Adjusted Mean 

Squares 
F-value P-value 

Model 19 4.70668E+19 2.47720E+18 0.56 0.912 

Linear 5 1.91773E+19 3.83545E+18 0.87 0.511 

H 1 1.36875E+19 1.36875E+19 3.10 0.086 

L 1 9.80100E+15 9.80100E+15 0.00 0.963 

F 1 9.54855E+17 9.54855E+17 0.22 0.645 

R 1 2.91328E+18 2.91328E+18 0.66 0.422 

B 1 1.61179E+18 1.61179E+18 0.36 0.549 

Square 4 1.07626E+19 2.69064E+18 0.61 0.659 

H*H 1 1.24113E+18 1.24113E+18 0.28 0.599 

L*L 1 3.34209E+18 3.34209E+18 0.76 0.390 

F*F 1 1.19964E+18 1.19964E+18 0.27 0.605 

R*R 1 1.48957E+18 1.48957E+18 0.34 0.565 

2-Way Interaction 10 1.71270E+19 1.71270E+18 0.39 0.945 

H*L 1 1.98752E+18 1.98752E+18 0.45 0.506 

H*F 1 2.64903E+18 2.64903E+18 0.60 0.443 

H*R 1 3.02888E+18 3.02888E+18 0.69 0.413 

H*B 1 4.14123E+18 4.14123E+18 0.94 0.339 

L*F 1 4.49250E+16 4.49250E+16 0.01 0.920 

L*R 1 4.55297E+17 4.55297E+17 0.10 0.750 

L*B 1 2.11897E+18 2.11897E+18 0.48 0.493 

F*R 1 4.57531E+14 4.57531E+14 0.00 0.992 

F*B 1 3.90833E+17 3.90833E+17 0.09 0.768 

R*B 1 2.30989E+18 2.30989E+18 0.52 0.474 

Error 40 1.76866E+20 4.42166E+18   

Lack-of-Fit 30 1.04758E+20 3.49193E+18 0.48 0.939 

Pure Error 10 7.21084E+19 7.21084E+18   

Total 59 2.23933E+20    

R-sq  80.02%    

Adj. R-squared  79.17    

Pred. R-squared  81.16    

 

Table 4. ANOVA results of Loss Modulus 

Basis 
Degree of 

Freedom 

Adjusted Sum of 

Squares 

Adjusted Mean 

Squares 
F-value P-value 

Model 19 5.58278E+17 2.93831E+16 0.46 0.965 

Linear 5 1.80761E+17 3.61521E+16 0.56 0.727 

H 1 1.30152E+17 1.30152E+17 2.03 0.162 

L 1 1.76915E+15 1.76915E+15 0.03 0.869 

F 1 8.29787E+15 8.29787E+15 0.13 0.721 

R 1 3.20972E+16 3.20972E+16 0.50 0.483 

B 1 8.44481E+15 8.44481E+15 0.13 0.718 

Square 4 1.42818E+17 3.57046E+16 0.56 0.695 

H*H 1 1.57617E+15 1.57617E+15 0.02 0.876 

L*L 1 4.68085E+16 4.68085E+16 0.73 0.398 

F*F 1 2.14300E+16 2.14300E+16 0.33 0.566 

R*R 1 4.00908E+16 4.00908E+16 0.63 0.434 

2-Way Interaction 10 2.34699E+17 2.34699E+16 0.37 0.954 

H*L 1 2.00183E+16 2.00183E+16 0.31 0.579 

H*F 1 2.75425E+16 2.75425E+16 0.43 0.516 

H*R 1 4.29558E+16 4.29558E+16 0.67 0.418 

H*B 1 4.30239E+16 4.30239E+16 0.67 0.417 

L*F 1 5.14779E+14 5.14779E+14 0.01 0.929 

L*R 1 1.64299E+15 1.64299E+15 0.03 0.874 

L*B 1 4.36242E+16 4.36242E+16 0.68 0.414 

F*R 1 3.83754E+15 3.83754E+15 0.06 0.808 
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F*B 1 6.25288E+15 6.25288E+15 0.10 0.756 

R*B 1 4.52863E+16 4.52863E+16 0.71 0.406 

Error 40 2.56309E+18 6.40774E+16   

Lack-of-Fit 30 1.59477E+18 5.31591E+16 0.55 0.900 

Pure Error 10 9.68321E+17 9.68321E+16   

Total 59 3.12137E+18    

R-squared  81.04%    

Adj. R-squared  85.97    

Pred. R-squared  71.16    

 

Table 5. ANOVA results of Tan δ 

Basis 
Degree of 

Freedom 

Adjusted Sum 

of Squares 

Adjusted Mean 

Squares 
F-value P-value 

Model 19 0.001071 0.000056 0.80 0.692 

Linear 5 0.000099 0.000020 0.28 0.920 

H 1 0.000001 0.000001 0.01 0.909 

L 1 0.000005 0.000005 0.07 0.787 

F 1 0.000053 0.000053 0.75 0.392 

R 1 0.000018 0.000018 0.26 0.612 

B 1 0.000022 0.000022 0.32 0.577 

Square 4 0.000239 0.000060 0.85 0.501 

H*H 1 0.000160 0.000160 2.27 0.139 

L*L 1 0.000002 0.000002 0.03 0.856 

F*F 1 0.000002 0.000002 0.03 0.866 

R*R 1 0.000145 0.000145 2.06 0.159 

2-Way Interaction 10 0.000732 0.000073 1.04 0.428 

H*L 1 0.000060 0.000060 0.85 0.362 

H*F 1 0.000011 0.000011 0.16 0.689 

H*R 1 0.000065 0.000065 0.92 0.343 

H*B 1 0.000045 0.000045 0.64 0.427 

L*F 1 0.000035 0.000035 0.50 0.485 

L*R 1 0.000092 0.000092 1.30 0.260 

L*B 1 0.000121 0.000121 1.72 0.198 

F*R 1 0.000173 0.000173 2.46 0.125 

F*B 1 0.000032 0.000032 0.45 0.504 

R*B 1 0.000098 0.000098 1.40 0.244 

Error 40 0.002812 0.000070   

Lack-of-Fit 30 0.002510 0.000084 2.78 0.046 

Pure Error 10 0.000301 0.000030   

Total 59 0.003882    

R-squared  81.04%    

Adj. R-squared  76.97%    

Pred. R-squared  81.23%    

Heater power (H) showing a substantial effect on the MP of Selective Inhibitor Sintering 

process is achieved. An increase of H (from 25 to 45W) increases the heat transmission into 

powdered nylon bed resulting into the quick melting of it placed at inhibitor. But inhibitor region 

shortens the flow of nylon12 particles which are rushing in it and instead of flowing inside, the 

molten nylon 12 flows out. Melting of the powder at inhibition influence the component's accuracy 

decreases the MP because of the over melting of polymer powder. Parts produced with lower H = 

25 W exhibits suitable sintering characteristics, and density improves MP. The factor F shown the 

nominal impact on LM and tan δ because increasing F resulted in the very small change in 

mechanical properties. The factor R also showed the nominal impact of it on SM, LM, and tan δ 

when R varied (from 170 to 250 mm/s). But higher feed rates increase the densification of powder 

result in improved MP. Bed temperature (B) was not found affecting MP. Still, this factor plays a 

role in heating bed or support below the melting point of nylon powder during sintering for 

reducing thermal alteration to initiate fusion between consecutive layers. Increasing B lessens the 

cooling rate. The strength and density of the components found useful at maximum value of B 

(Kruth et al., 2004).  

The experimental responses showed that the selected factors were exhibiting a significant role in 
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MP of components produced using the SIS process. The next step is the optimization of factors for 

finding the optimal set of working factors to fabricate the components with the enhanced dynamic MP. 

Predicted factors levels of H, L, F, R, and B improve the dynamic MP (SM, LM, and Tan δ). 

3.1. MROPSO Analysis results 

Three outputs, such as SM, LM, and Tan δ, were considered in this study. However, all three 

objectives cannot be valid concurrently for manufacturing products. The selection of outputs are 

solely governed by the need of a design engineer. So, two outputs at a time will be optimized 

considering the third one as constraint. Third output  controlled value is taken from the 

experimental inspections. The objective function required for MROPSO is provided by an 

empirical model obtained between the factors and outputs developed from the ANOVA to solve the 

optimization of the problem. In the current work, all the objectives (SM, LM, and Tan δ) are to be 

maximized, which are the functions of factors H, L, F, R, and B. Hence, the objective functions SM, 

LM and Tannδ are switched into minimization mode and the objective functions are altered as below: 

Objective 1= Minimize (1/SM)  = - (SM); 

Objective 2= Minimize (1/LM)  = - (LM);  

Objective 3= Minimize (1/Tanδ) = - (Tanδ). 

Three optimization problems were designed considering two outputs as objectives and the 

third one as a constraint. The empirical models from Equation (10) to Equation (12) were used as 

functional relationships in MROPSO coded in MATLAB® R20 for solving the following 

minimization cases.  

Case 1: Maximizing SM and LM subjected to Tan δ ≥ 0.1189946 is the highest value 

acquired from experimentation (refer to Table 2). 

Case 2: Maximizing SM and Tan δ subjected to LM ≥ 1243090200 is the maximum value 

from the experimentation (refer to Table 2).  

Case 3: Maximizing the LM and Tan δ subjected to SM ≥ 11034210000 is the highest value 

acquired from the experimentation (refer Table 2). 

 

Figure 2. Pareto front for objectives: (a) SM and LM (b) SM and Tan δ (c) LM  and Tan δ 
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Instead of maximization of the objective, an equivalent/consistent minimization function is 

to be utilized in the MATLAB program by using -ve sign. Simulation is performed to establish the 

capability of the MROPSO algorithm. The initial population was set to 100 for the present 

algorithm. The factors applied to MROPSO such as the initial population size =100, the inertia 

weight= 0.5(rand+1)/2, and both the c1 = c2 = 1.5 (cognitive and social factor). This developed 

three sets of Pareto-fronts viz. SM and LM, SM, and Tan δ  and LM and Tan δ were generating an 

optimal solution for the outputs.  

 

Table 6. Pareto optimal solution for SM and LM 

V H L F R B SM LM 

1 44.9999 0.39996 9.04575 211.015 81.967 5924708534.4 723844445.2 

2 42.8275 0.20091 6.0417 207.351 99.995 9130128036.5 1011656247.2 

3 44.9804 0.39994 6.61465 210.051 93.073 8067534579.9 960660497.6 

4 44.9486 0.399995 6.00953 206.309 99.999 8859230241.1 1042880230.2 

5 44.9820 0.39996 6.33328 207.885 99.293 8715615682 1029274430.4 

6 44.9887 0.39995 7.33068 210.679 85.554 7192003725 868714981.6 

7 44.9889 0.39996 6.58807 208.858 96.921 8429981472.9 999562296 

8 44.9950 0.39995 7.0801 210.755 88.883 7561440353.2 907810531 

9 44.9986 0.39995 8.6477 211.015 81.969 6211135912.1 758448627 

10 44.9965 0.39989 7.4896 210.865 83.447 6950748308 843105766 

11 44.9991 0.39994 8.8882 211.018 82.007 6045551551 738441940.3 

12 44.9913 0.39995 7.4464 210.937 85.458 7136826018 862677927.6 

13 43.3957 0.2185 6.0427 206.519 99.999 8864161585.3 988913394 

14 44.9998 0.39997 8.7743 211.013 81.98 6124977428.7 748088085.6 

15 43.3529 0.20264 6.2368 208.202 98.62 9022837871.6 1007553740.8 

16 44.9926 0.39995 7.2487 210.841 82.688 6977073963.7 846167762.6 

17 44.9932 0.39996 7.0318 210.919 97.350 8302189915.8 985901736 

18 44.9887 0.39989 7.2854 209.465 86.207 7273473843.7 877613601.7 

19 44.9997 0.39996 8.4621 211.004 82.081 6340261047.3 773756145 

20 44.9988 0.39996 8.5549 211.004 82.030 6277244457.7 766292593.6 

21 44.9971 0.39997 6.8887 210.736 90.922 7796964770.9 932573507.1 

22 44.9999 0.39995 7.0801 210.763 88.883 7560768645.4 907785426.5 

23 44.9902 0.39995 7.07 209.713 90.643 7727176086.8 925554980.6 

24 44.9950 0.39993 7.0483 210.795 86.613 7376508905.4 888267890.7 

25 44.9959 0.39996 7.0195 209.4191 92.466 7904323642.1 944422747.2 

26 44.9992 0.39993 6.811 210.957 93.085 8004065603.2 954305590 

27 44.9592 0.39999 6.5726 207.315 97.518 8510339407.9 1008248563.1 

28 44.9918 0.39996 6.4687 207.989 99.107 8666798648.7 1024699181.8 

29 44.9973 0.39998 6.8113 210.333 89.060 7661032431.3 918165668.9 

30 44.9955 0.39995 7.756 210.804 82.129 6728780903.4 819033814.6 

31 44.9973 0.39995 8.1996 210.929 82.168 6504226679.7 793027808.8 

32 44.9969 0.39996 7.9227 210.997 82.120 6646994296.7 809666608.4 

33 44.9963 0.39996 6.7059 209.121 94.229 8156384944 970782177.4 

34 42.8426 0.20091 6.0418 207.36 99.980 9129536399.7 1011735225.61 

35 44.9748 0.39997 7.2670 210.345 88.407 7462124682.6 897183174.75 

 

 

Table 7. Pareto optimal solution for SM and Tan δ 

No. H L F R B SM Tan δ 

1 44.965 0.39998 7.0713 203.464 99.975 9164652577.07 0.128090 

2 26.421 0.3998 7.983 224.035 99.939 7753792890.24 0.13065 

3 25.008 0.39996 8.7997 233.248 99.923 7395642921.71 0.133078 

4 44.998 0.39996 7.4594 231.285 98.301 8599420961.33 0.1306331 

5 44.259 0.39995 6.859 203.302 99.998 9178155159.79 0.127097 

6 25.872 0.39995 8.118 232.552 99.808 7609447790.06 0.131897 

7 25.021 0.39995 8.630 232.579 99.832 7435574124.03 0.13302 

8 44.995 0.39992 7.374 231.533 99.653 8692620834.61 0.130621 

9 44.997 0.39991 7.472 231.673 97.811 8556669684.47 0.130635 

10 26.171 0.39979 7.983 224.160 99.939 7716903120.15 0.130928 

11 44.975 0.39995 7.371 226.436 99.834 8820357132 0.130538 

12 44.963 0.39991 7.165 215.775 99.902 9032787997.85 0.129806 

13 44.967 0.39989 7.163 217.011 99.707 9000666790.63 0.129912 

14 44.997 0.39991 7.472 231.548 97.811 8559539904.75 0.13064 
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15 25.008 0.39996 8.7998 233.248 99.923 7395642921.71 0.133078 

16 25.570 0.39991 8.3592 227.457 99.822 7590061639.38 0.13202 

17 44.978 0.39992 7.1304 219.824 99.918 8976206045.61 0.13016 

18 25.185 0.39979 8.2242 230.000 99.948 7523698616.22 0.132621 

19 44.996 0.39996 7.4314 230.694 98.919 8657179152.30 0.13063 

20 26.683 0.39983 8.0629 227.245 99.914 7768727921.27 0.13069 

21 44.987 0.39992 7.4256 220.628 99.765 8915692118.92 0.1302997 

22 26.114 0.39986 8.110 226.893 99.816 7689751140.07 0.131269 

23 44.977 0.39994 7.354 228.609 99.661 8764367758.94 0.130584 

24 44.953 0.39991 7.1299 213.046 99.832 9065435409.14 0.129483 

25 44.982 0.39994 7.4082 221.923 99.797 8898652126.39 0.13037 

26 25.649 0.39995 8.2951 232.471 99.774 7567001991.38 0.13219 

27 44.991 0.39995 7.3739 223.126 99.684 8874086796.99 0.13043 

28 44.968 0.39996 7.0978 221.67 99.87 8944987609.83 0.13026 

29 44.9955 0.399951 7.4231 231.452 99.201 8658742182.09 0.130624 

30 44.951 0.39977 7.1135 208.757 99.801 9106268948.89 0.12891 

31 44.993 0.39995 7.3534 230.197 99.656 8727879798.19 0.13062 

32 25.234 0.3998 8.3649 233.002 99.787 7493506107.19 0.13272 

33 44.977 0.3999 7.2290 228.359 99.661 8785426350.75 0.13057 

34 25.008 0.3999 8.5498 233.498 99.923 7435988478.47 0.133067 

35 26.683 0.3998 8.3129 226.995 99.914 7751000127 0.130758 

 

 

Table 8. Pareto optimal solution for LM and Tan δ 

 

 

 No. H L F R B Tanδ LM 

1 25.0002 0.3999997 8.6996 235.46 99.996 0.133141 846014347.03 

2 44.9939 0.399996 6.9805 215.02 99.996 0.12969 1024981380.7 

3 44.9982 0.399991 8.5487 230.59 89.47 0.13095 882589439.71 

4 44.9967 0.399998 7.4075 229.78 99.397 0.13062 981396856.3 

5 43.5309 0.399989 6.8444 214.74 99.998 0.12808 1017647892.2 

6 44.9966 0.399978 8.4348 230.30 89.65 0.130933 889229745.75 

7 44.995 0.399957 8.0974 229.43 91.82 0.13079 917103039.78 

8 25.282 0.399976 8.2978 232.72 99.85 0.132648 862488559.63 

9 44.996 0.399988 7.3087 228.38 99.472 0.130598 987585226.18 

10 44.988 0.399964 7.688 229.79 94.056 0.130668 940968133.93 

11 44.9968 0.399972 8.1541 229.92 93.266 0.130748 923026404.8 

12 44.994 0.399995 7.2976 218.46 99.859 0.130128 1016207836.7 

13 44.994 0.399988 7.2032 216.10 99.637 0.129875 1019656895 

14 25.178 0.399443 8.6110 235.43 99.989 0.132893 848279975.4 

15 44.996 0.399979 7.4335 229.87 97.669 0.130623 969031585.1 

16 44.994 0.399977 7.1800 222.04 99.825 0.130334 1008789818.4 

17 25.089 0.399999 8.1579 232.05 99.992 0.132847 863863284.69 

18 26.037 0.399959 8.0292 229.97 97.683 0.131165 876796307.01 

19 44.993 0.399995 7.3196 222.71 99.503 0.130395 1003609192.5 

20 44.995 0.399986 7.2452 226.73 99.781 0.130556 995370378.9 

21 44.997 0.399979 8.2831 230.30 89.671 0.130911 895225089.2 

22 44.984 0.399943 8.1605 230.30 90.050 0.130858 901712593.5 

23 26.181 0.399851 7.884 228.77 98.524 0.131002 879765304.6 

24 44.996 0.399977 7.5011 229.90 95.957 0.130637 956484234.7 

25 44.997 0.399975 8.0347 229.96 94.163 0.130714 932442677.2 

26 44.996 0.399983 7.8994 230.21 91.909 0.130764 921182596. 

27 44.997 0.399994 7.259 229.09 99.476 0.130609 985909428.1 

28 44.986 0.39996 8.1302 229.64 91.544 0.130789 913758653.7 

29 44.997 0.399984 8.4348 230.26 89.822 0.130924 890424248.2 

30 44.997 0.399996 7.6603 230.22 96.011 0.130657 953127216.2 

31 44.987 0.399995 7.3208 223.95 99.452 0.130447 1000008964.9 

32 25.431 0.399933 8.2685 231.1 98.285 0.132122 868067951 

33 25.781 0.399742 8.0653 230.42 99.799 0.131864 872679574 

34 44.999 0.39998 7.5751 229.75 97.057 0.13064 963074843.1 

35 44.996 0.39998 7.5439 229.7 97.089 0.13063 963809808.8 
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Table 9. Best ND solution for three cases 

No. H L F R B 
Objective values 

SM                      LM            Tan δ 

Normalized 

objective 
Weighted normalized 

Composite 

score 

1 42.8275 0.20091 6.0417 207.351 99.995 9130128036.5 1011656247.2 0.1299 1 0.5224 0.1406 0.4 0.2089 0.028 0.6369 

2 44.963 0.39991 7.165 215.775 99.902 9032787997.85 1022302908.3 0.12981 0.6517 1 0 0.2607 0.4 0 0.6607 

3 44.987 0.399995 7.3208 223.95 99.452 8850622722.4 1000008964.9 0.13045 0 0 1 0 0 0.2 0.2 

  

Figure 2 (a), (b), and (c) show the Pareto-front for SM and LM, SM and tan δ, and LM and 

tan δ, respectively, and a corresponding sample set of the optimal solutions have been provided in 

Table 6, 7 and 8. Yet, usage of MROPSO yields in a huge number of ND solutions for improving 

the grouping of objectives of MPs viz. SM-LM, SM-tan δ, and LM-tan δ. The different results of 

the Pareto front achieved from MROPSO were graded by the composite scores of MDT for 

selecting the finest solution. The decision matrix is standardized/normalized using Equation 8 

accurately with the “Objective Weights (OW)” that were established for the “Standardized Output 

(SO)” values by employing the MDT by means of Equation 9. They are converted into “Weighted 

Objective Functional (WOF)” values by multiplication of the SO values and the OW. The optimum 

solution is nominated on the basis of their composite scores obtained by the adding all the WOF 

values of every alternative. The outputs having the maximum combined score are preferred as the 

finest solution. Table 9 showing the top-graded solution for various grouping of many outputs. 

4. Conclusions 

The study presented a joint technique of ANOVA allied with multi-response PSO for the 

optimization of the mechanical properties of SIS manufacturing process on Nylon 12 material. 

Secondly, MDT of OW estimation was conducted to evaluate the weights of the factors. The 

compound grade for all the ND solutions was determined by the summation of the WO values. The 

finest solution is chosen by considering the maximum out of all ND solution to increase 

objectiveness and preciseness in the decision making for the inspectors. This investigation provides 

an operative guide to select optimal factor settings for achieving the desired MP of the SIS process 

to the instructor and experts. From the data of experiments sections and exploration, the following 

inferences can be drawn: 

1. Higher the Heater power (H) showed the MP decreasing, but the optimum value is 

contributing to maintaining the maximum MP.    

2. The increase of layer height also decreasing the MP, and its minimum value is preferred 

due to the density variation of components at their higher layer heights.  

3. The increasing effect of F found not affecting SM but nominally increased LM and tan δ. 

Factor R also has shown a nominal rise in the MP.  

4. Factor B did not show any role in MP in experiments, but its value is adopted by 

MROPSO analysis.  

5. From MROPSO, all factors at their different levels presented their corresponding 

responses as a pool of many solutions, which covers the various levels of factors to 

maximize the responses as a hand guide to design and production engineers. Pareto front 

solutions for three responses using MDT, it is inferred that best solution is having factor 

set of  H = 42.8275 W, L = 0.20091 μm, F = 6.0417 mm/s, R = 207.351 mm/s and B = 

99.995°C produce very improved MP to higher accuracy level.  

6. From MROPSO results, it is also seen. B is the most insignificant factor as B remains the 

same for most of the optimal solutions to maximize the responses. 
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