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Abstract: Implementation of the “Selective Inhibition type of Sintering (SIS)”” method in the field of additive
manufacturing, which develops the components by building layers, depends upon the proper selection of their
optimum input attributes. Components manufacturing as per anticipated size is accomplished by the
optimization of factors, namely, heater power (H), layer height (L), the feed rate of the heater (F) and roller
(R), and support’s temperature (S) using “Multi-Response Particle Swarm Optimization (MRPSO)”. Analysis
of variance was employed to substantiate the competence of the established models. Trials have shown that
mechanical properties of manufactured components are characterized by Design of experiments in a direct
relationship with F and R, but inversely related to H and L. Finally, unigue MRPSO algorithm has been
employed for parallel optimization of multiple outputs. Introduced mutation functions (of genetic algorithm)
into MRPSO algorithm to prevent early convergence. Optimal-solutions of Pareto-front achieved by MRPSO
were graded by the compound grades (resulting from maximum deviation theory) to increase preciseness in
making the decisions. The MRPSO analysis offered valuable information for monitoring the factors to
improve the accuracy of SIS components. Massive optimal-solution data have been generated for every
possible combination of factors to maximize the responses.

Keywords: Selective Inhibition Sintering; Multi-objective Optimization; ANOVA; Mechanical Properties;
Additive Manufacturing; MOPSO.

1. Introduction

Innovative manufacturing processes undergo many phases, like innovating a product with an
object, qualifying refined idea and designing advanced manufacturing methods. But 3™ phase
involves producing intricately shaped parts using “Rapid Prototyping (RPT)” from CAD source
files because of its broader application in automotive, biomedical, and aircraft industries for
developing operational, trial product and intangible parts. Also, RPT builds complex configurations
without using tools and reducing production preparedness time equal to 60% contrasted to existing
methods (Hilton et al., 2000). Classification of RPT depends on the processing of materials like
“Stereo-Lithography (SLA)”, “Fused Deposition Modeling (FDM)”, and “Laminated Object
Modeling (LOM)” for liquid resin, solid filament, sheet form etc., respectively (Mahapatra et al.,
2012). “Selective Laser Sintering (SLS)” is one of the current developments of RPT for powder
form of materials to produce in large quantity production using high-intensity lasers. High-intensity
lasers in production system turn into a costly process, and high-speed sintering process is
introduced to eliminate the laser sintering process (Rouholamin et al., 2016). To eliminate laser
heating, a unique RPT process employing the infrared heating process for sintering powders called
as “Selective Inhibition Sintering (SIS)”. But attaining higher accuracy with minimal wastage
would become the uncertainty feature influencing SIS survival. Laser sintered are affected by CO,
to sinter at anticipated layers (Gibson et al., 1997). SIS is applied on selected thin polymer layers
formed by powder and wetted by inhibition liquid on boundaries of the surface such that sintered
polymer within and next to the boundaries supports the construction. SIS has shown extensive
advantages compared with other methods of the RPT technology such as the abolition of costly
heating methods, backing material, tooling arrangement, and is cost-effective in handling various
powder materials. Disadvantages of SIS, as a complex process, are requiring high strength and
excellent surface quality and geometrical accuracy, which involves being accustomed to working
factors and manipulating the strength. SIS method is based on the various interdepended factors, in
which some are independent. The component strength based on factors like tessellated model
accuracy, the algorithm for slicing, equipment resolution, and powder grains geometry, etc.
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(Khoshnevis et al., 2003) was noticed. These factors correspondingly lead to advanced input
variables like layer thickness, heater power, and heater feed rate. Using these variables,
optimization of “Mechanical Output Characteristics (MOC)” using “Response Surface
Methodology (RSM)” has been investigated. Moreover, RSM also evaluated the significance of
factors on accuracy. The results were validated to qualify the production of parts with acceptable
strength (Baligidad et al., 2018). The work extended using two more factors apart from the above,
such as roller feed rate and bed temperature, for optimization of parameters on MOC to produce
components with anticipated dimensions using the RSM approach. A face-centered composite
block design was utilized to prepare the experimentation plan with three leveled factors of the
“Polyamide (PA12)” substance for an innovative SIS technique. Then, verified the fitness of
generated models using “Analysis of Variance (ANOVA)”. The microstructure was also used to
validate the surface texture in collaboration with sensitivity analysis to assess the factor's effect on
MOC at optimal conditions (Baligidad et al., 2019). Making the SIS is an evolving process
demands lots of developments in other fields. Accurate dimensions of components and strength
mainly depend on particle shape, size, and packing density, which are major concerns of most of
the present RP technology.

Literature analysis of SIS technology shows that this field is hardly studied. Only a few
studies like RSM investigated the impact of input variables on “Mechanical Properties (MP)”,
without even taking the weightage of one response on the others in multi-response optimization.
Optimal values of input variables and regression models were obtained. These models’ accuracy
level was deficient as it does not take process non-linearities and modeling difficulties when
compared with the accuracy level of experimental results. To increase the accuracy level and to
have many optimal conditions of inputs for varying weights of responses, ‘“Particle Swarm
Optimization (PSO)” analysis has been studied for the MPs (storage and loss modulus and Tan J)
of components produced from SIS process. Multi-objective optimization is considered for the six
inputs or variables. Multi optimal values of six parameters have been suggested for the designers to
use as a reference guide at higher accuracy level more than Genetic algorithms and other methods.

2. Methods and materials

Nylon 12 or PA12 powder having a grain size of 110 pm is widely accepted universal plastic
having additive production applications because of its durability, ultimate strength, shock strength,
and withstand fracture by stretching itself. By removing the moisture content (heating in glycerol
up to 120°C for one hour), grain uniformity will be improved. To produce components, we need to
select a suitable inhibit solution (potassium iodide + isopropyl alcohol + water) to accelerate the
sintering effect and employ it as an inhibitor in the SIS process. The SIS process is studied by a
plan of experimental runs for multi-object optimization that should not be repetitive, time
intervening, and costly. Therefore, input variables of the SIS process that play a key role in the
component quality and accuracy are selected before ensuing running of experimental trials. From
the previous work, operating input factors like heater power (H), heater feed rate (F), layer height
(L), roller feed rate (R), and bed/support temperature (B) are freely controllable such that they
influence directly the MOC of the SIS produced components. Also, their ranges of operation with
the designer decision are tabulated in the Table 1. H and B attribute ranges are adopted using the
thermic property of substances dealt with. R and F attributes also impact the precision and trigger
the non-uniform sintering. Experiments conducted to investigate the strength must be large in
number such that one factor varies, keeping other factor values constant.

Table 1. Working factors of SIS and their range

Varying factors Units Values Fixed factors Units Values
Heating power (H) Watts 25, 35, 45 Printer feed rate m/s 0.03
Layer height (L) mm 0.2,0.3,04 Printer frequency Hz 400
Heater/ Furnace feed rate (F) mm/s 6, 8, 10 Printer pressure Bar 0.5
Roller feed rate (R) mm/s 170, 210, 250 - - -
Bed/support temperature (B) °C 80, 100 - - -

When the number of factors affecting the multiple outputs is bigger, the experiment work
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has to be increased to cover the effect of every factor level on each output in the traditional
techniques. So, a large number of tests are conducted to include most possible combination of input
factors. Sometimes it becomes cumbersome to conduct vast trial runs bearing in mind the period
and expenditure used during execution of experiments. For such instances, orthogonal matrix-based
experimental planning suggested by Taguchi, taking all factor combinations and their levels for
every experiment are recommended (Yunus et al., 2016). Taguchi Design employs various design
approaches of system, parametric, and tolerance type. By employing RSM, a multi-response opti-
mization technique was performed to choose the level of factors in the grinding process (Yunus et
al., 2020). The correctness and proficiency of an SIS process depend on the suitable implemen-
tation of the trial strategy and the adoption of their procedures. In this work, a quadratic regression
considering the linear, square, and interaction of factors using ANOVA is applied to convert
responses into empirical models of the SIS process (Montgomery et al., 2019), (Myers et al., 2016).

Furthermore, The Central Composite Design of RSM is employed, and optimization carried
out. RSM proved a suitable approach by increasing efficiency and product superiority to a certain
extent (Aldahdooh et al., 2013), (Acherjee et al., 2012), (Balachandran et al., 2012). Maximum one
level of each parameter is obtained corresponding optimum condition, and without taking the role
of increasing or decreasing the significance of responses on each other as well as a range of opti-
mum factors level is difficult to get under varying requirements of industries. Therefore, we use the
above models from ANOVA as objective functions in the PSO algorithm to obtain a range of opti-
mal values of each parameter using evolving methods to a very accuracy level where the RSM
method can never reach. PSO handle easily the factors and their levels without exact range using its
natural algorithms but they are keenly selected (refer Table 1.). Factors without proper range is not
possible by RSM for examining the MOC in sintering of specimens. In this approach, experiment work
generated for five-factor level by grouping as per the “Orthogonal-matrix (OA)” of Taguchi design to
examine their effect on shrinkage of components. Table Ley OA is selected for the present study.

2.1. Mechanical Properties using Dynamic Mechanical Analysis

Specimens made up of Nylon 12 powder with inhibitor solution for the above analysis
keeping with standards of ASTM D638 (dimension of 13 x 3.2 x 60 mm) were prepared. Firstly,
3D model of sample is imported in STL format and split into many segments for defining contour
profile by processing software of machine. It fecilitates the inhibitor solution nozzle is placed on
those split regions to avoid shrinkage factor at different scale and prepares samples at different
combination level of SIS factors. The “Dynamic Mechanical Analysis (DMA)” investigates the
different behavior of polymers, namely structural “Storage Modulus (SM)” and visco-elastical
“Loss Modulus (LM)” at a fixed frequency of 1 Hz using a three-point bending type test, the
average values of moduli are noted down. Totally, 60 tests for various design factors (consisting of
one categorical and four contributing factors) with various permutations were accomplished and
displayed in Table 2.

Three MP in this study were measured namely, storage modulus (measures load-bearing
capacity representing structural elastic strength behavior), loss modulus (heat energy dissipation/
cycle representing viscous behavior) and tan & ( measures frequency of load absorbing capacity
under varying temperature and is defined by percentage of loss modulus from storage modulus).
Using ANOVA, every permissible grouping of factors was linked to responses obtained from
experimental values in a mathematical form. In this approach, second-order (quadratic type)
regression relationship mathematic models for the experimental outputs were generated, to evaluate
the impact of factors on the MP in polynomial form as follows:

SM =ag+ayH)+az(L)+as(F)+asR+as(B)+ai1(H?)+az2(L?)+a33(F?)+ass(R?)+ass(B?) +ai2(HL) +az(HF)+ 1
a14(HR)+a15(HB)+az23(LF)+az24(LR)+azs(HB)+ ass(FR)+ ass(FB)+ ass(RB) ( )

LM =bo+baH)+b2(L)+0b3(F)+baR+bs(B)+b11(H?)+b22(L2)+b33(F2)+baa(R?)+bss(B2)+h12(HL)+b1s(HF)+ 2
b1a(HR)+b1s(HB)+b23(LF)+b24(LR)+h2s(HB)+ b3a(FR)+ bzs(FB)+ bas(RB)

Tand = cot+caH)+c2(L)+ca(F)+caR+ Cs(B)+ Cr1(H?)+C22(L2)+ Caa(F2)+Caa(R2)+Css5(B2)+ ci2(HL)+caz(HF)+
c1(HR)+c1s(HB)+caa(LF)+Coa(LR)+Cas(HB)+ c34(FR)+ cas(FB)+ cas(RB) 3)
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where ao, bo and co are the average values of the corresponding outputs, and a; to ass, b: to bssand
c1 to cas represents the coefficients depends on single, square, as well as the interactive effects of
factors of Equation (1) to Equation (3) respectively.

Table 2. Data collected as per the Lgo orthogonal design matrix of the Taguchi method

Runs H L F R B SM (Pa) LM (Pa) Tand

1 45 04 10 170 100 7030210000 780176100 0.110975
2 3 03 10 210 100 8207210000 879681000 0.107184
3 45 0.3 8 210 100 9384210000 1080132900 0.115101
4 25 04 6 170 80 2399210000 152862600 0.063714
5 25 04 6 250 80 7041210000 837860100 0.118994
6 35 03 8 210 100 10099210000 1129164300 0.111807
7 25 04 10 170 100 6909210000 788828700 0.114171
8 35 02 8 210 100 5083210000 501850800 0.098727
9 45 04 10 250 100 6843210000 709513200 0.103681
10 45 0.3 8 210 80 6282210000 693650100 0.110415
11 45 04 6 170 80 7954210000 850839000 0.106967
12 45 0.2 10 170 80 5842210000 615776700 0.105401
13 25 0.2 6 250 100 6106210000 646060800 0.105804
14 45 0.2 6 170 80 8757210000 933038700 0.106545
15 25 04 10 170 80 7976210000 888333600 0.111373
16 35 0.3 8 210 100 3928210000 395135400 0.100589
17 35 03 8 210 80 9197210000 971975400 0.105682
18 25 0.2 10 170 80 4379210000 460029900 0.105049
19 45 0.2 6 250 80 6480210000 670576500 0.103481
20 45 0.2 6 250 100 7327210000 728260500 0.099391
21 35 03 8 210 80 7096210000 807576000 0.113804
22 35 03 8 170 100 3609210000 327356700 0.0907
23 45 04 10 250 80 6436210000 654713400 0.101723
24 25 04 6 170 100 7558210000 836418000 0.110664
25 45 04 10 170 80 5413210000 622987200 0.115086
26 35 03 8 210 80 10693210000 1217132400 0.113823
27 35 03 10 210 80 5083210000 585492600 0.115182
28 35 03 6 210 80 8119210000 879681000 0.108346
29 25 04 6 250 100 7976210000 899870400 0.112819
30 45 0.2 6 170 100 10330210000 1121953800 0.108609
31 35 03 8 250 80 6568210000 679805940 0.103499
32 35 03 8 210 80 7954210000 888333600 0.111681
33 3 03 8 210 80 2729210000 269672700 0.09881
34 45 04 6 250 80 6381210000 702302700 0.110058
35 3 0.2 8 210 80 8251210000 925828200 0.112205
36 25 03 8 210 80 7712210000 915733500 0.118738
37 25 02 6 250 80 8427210000 951786000 0.112942
38 45 0.2 10 170 100 7338210000 755660400 0.102976
39 25 02 6 170 100 5842210000 641734500 0.109844
40 35 03 8 210 100 9604210000 1044080400 0.108711
41 25 0.2 10 250 100 6139210000 657597600 0.107114
42 35 03 8 210 100 8581210000 911407200 0.10621
43 35 03 8 210 100 11034210000 1166658900 0.105731
4 35 03 8 210 80 7250210000 754218300 0.104027
45 45 0.2 10 250 100 8152210000 853723200 0.104723
46 25 0.2 10 250 80 7976210000 798923400 0.100163
47 35 03 8 250 100 8185210000 866702100 0.105886
48 45 04 6 170 100 7360210000 806133900 0.109526
49 25 0.2 10 170 100 6887210000 798923400 0.116001
50 35 04 8 210 100 10902210000 1243090200 0.114022
51 45 0.2 10 250 80 8669210000 1009470000 0.116443
52 25 03 8 210 100 3477210000 379272300 0.109074
53 35 04 8 210 80 7789210000 847954800 0.108863
54 25 04 10 250 100 4181210000 438398400 0.10485
55 45 04 6 250 100 8515210000 956112300 0.112283
56 25 0.2 6 170 80 4291210000 490314000 0.11426
57 25 04 10 250 80 7019210000 797481300 0.113614
58 35 0.3 8 210 100 6238210000 618660900 0.099173
50 35 03 6 210 100 5479210000 536461200 0.097908
60 35 0.3 8 170 80 8306210000 912849300 0.1099
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2.2. Particle Swarm Optimization

PSO algorithm principally presented a natural evolution evaluation technique using a
population inspired from the bird's flock and fish behavior by Kennedy and Eberhart in 1995. It
involves a simple concept, easy to develop, and quick to converge. Therefore, PSO is gaining
considerable popularity and has widespread applications, including job forecasting, electrical
control, vibration system, supply chain system, automobile routing, and components replacing
check difficulties (Wu et al.,2008), (Mohanty et al., 2016). PSO is initiated with the random sized
population and appropriate range of bound values of factors (refer Figure 1.). After evaluating the
fitness function, the PSO procedure reiterates the subsequent steps repetitively (Gibson et al.,1997):

C> >

Figure 1. Steps of PSO process
Vi(t+1) = wvi(t) + carandi(Poesti — Xi(t)) + Caranda(Gpesti — Xi(t)) 4)
Xi(t+1) = xi(t) + vi(t+1) (5)

where vi(t) and x;(t) are the velocity and position of an element i at iteration t; Ppesii and Gpesii are the
personal and global best of particle i; rand indicates the random number (0 to 1); w is the weighting
function; c; and c; are the cognition and social learning rates; respectively. In the fitness function
approach, Ppest and Gpest are the personal and general best in each iteration and the group among all
personal bests, respectively.

2.3. Proposed Multi-Response Particle Swarm Optimization Algorithm

Present-day problems comprise parallel optimization of various objectives/responses, which
are either conflicting or contradicting nature demands ‘“Multi-Response Optimization (MRO)” in
most of the applications when responses are two or more. The PSO can also be employed for
cracking the MRO problems known as the “Multi-Response Particle Swarm Optimization
(MRPSO)” (Tripathi et al.,2007). When every response is considered together, the outcomes are
optimum as no supplementary solution within the track region. It means these types of results are
outstandingly good to other solutions within track space called as “Pareto-Optimal Solutions
(POS)”. The illustration of effective set obtained in the demonstrable space is called a “Non-
Dominated (ND)” set because every solution leads the other. ND is identified by comparing and
checking the conditions given below. A minimization problem for two objectives can be checked
using Equations (6) to (7):

Objectivei[k] > Objetive:[n] and Objective,[k] > Objectivez[n] (6)
or  Objectivei[k] > Objetivei[n] and Objectivez[K] > Objective,[n] @)

where k and n signify output numbers from the population of two objective function values. The
MRO has two goals, primarily to converge to the POS set, and secondly to uphold the variety and
scatterings in solutions.

In MRO problems, every particle has a gbest set (stored in an archive where ND solutions
are present), but only one is chosen for updating its position. The MRO keeps the archive updated
after every iteration, which was empty at the start and can store a maximum number of user-
defined ND solutions. “Crowding Distance (CD)” approach was broadly useful in evolutionary
MRO algorithms for promoting multiplicity. CD measure in MROPSO to select gbest was first
used in (Raquel et al., 2005). The highest number of generations is set as a finishing criterion.
Typically, “Multi Factor Decision Making (MFDM/ MADM)” methods are selected to find the
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score of the results and for choosing the finest solution, which has the highest grade. But the
weights allocated in the MADM process to convert multiple into a single corresponding objective
score are practically independent and influence the decision of grading the alternate results greatly.
“Maximum-Deviation-Theory (MDT)” proposed for avoiding ambiguity of experts allocating
weights and extracting the precise data from the available with the logic of smaller weight given to
the responses holding analogous values than the responses holding higher changes/deviations. ND
solutions from MROPSO are used for the decision matrix (Yingming et al., 1997). Standardization
of every characteristics is performed for altering various scalar values and units amid several
characteristics into a joint computable scalar value depending on “larger the better” or “smaller the
better” using Equation (8).

. —min;{r;}

= , for larger the better characteristics (8)
: maxi{ ij}_mmi{ ij}

The ND solutions attained from MROPSO algorithm will be graded by approximating the compound
grade of every solution by accumulation of the weighted accomplishment (refer Equation (9)) of all

characteristics. Xy designates the evaluations of the i" alternative relating to the j" attribute and d (XurX!;)
indicates the deviation between the two evaluations of i, I™ alternatives relating to the j™ attribute. The
normalized attribute weights are determined as follows:

wW. = Zilz:il[(d(iw le)])
| Z?Aﬂzi’\‘:lzl’\lzl[(d(iij' )Zu)])

3. Result and Discussions

Quadratic or second-order statistical models for the three responses of MP were generated by
verifying the adequacy of the models using ANOVA. It considers the effect of interaction along
with single, square of factors on different outputs measured by the ANOVA approach of Minitab
software to develop mathematical relationships between various MP and factors from Tables 2.

The R-square value of relationship models for SM, LM and Tan 6 are 0.80, 0.82 and 0.85
respectively shows the linear relationship which is agreeable and non-linear relationship of 20%,
18%, and 15% between investigational and forecast results is disagreeable. The models for SM,
LM, and Tan 6 are expressed in Equation (10) to Equation (12), having all defined factors.

SM=-31325231717+450366224xH-53702117599xL +2881695198xF+241089992xR-438472xB
-4894035xH2+80309649123xL 2-120288377xF2-335096XR2-249218750xHx L -14385938xHxF
-769141xHxR+3391667xHxB-187343750x L xF-29820312x L xR+242611111xL xB-47266XFxR
-5209722xFxB-633264xRxB (10)

Model-predicted for SM includes all linear, square, and interaction terms with positive and negative
signs. Equation (10) indicates that linear terms like H, F and R along with Bed temperature, and interaction
terms of H, B, and L have an positive impact on SM.

LM=-4288599167+25581488xH-7353436171xL+395054038xF+36654368%R+2535733xB
-174406xH2+9504324500%L.2-16077201xF2-54975xR?-25011422xHx L -1466886xHxF
-91596xHxR+345703xHxB-20054203xLxF-1791359x | xR+34810692x L xB-136887x
xFxR-658960xF*xB-88669%RxB (11)

9)

The generated statistical model for the loss modulus (refer to equation (11)) shows that F, R,
and B have positive and heater power and layer height have a negative effect on LM, the square
effect of heater power has positive as well as the interaction of H, L and B factors have a positive
effect on LM.

Tand=-0.106-0.00232xH-0.380xL+0.0129%xF+0.00201xR+0.00103xB+0.000056xH?2+0.068x 2
-0.000156xF2-0.000003%R2+0.00137xHxL-0.000030xHxF-0.000004xH*R-0.000011xHx*B
+0.00523% L xF+0.000423xLxR+0.00183%LxB-0.000029xF*R-0.000047xFxB-4x10°xRxB (12)

Equation (12) shows that linear terms like F, R, and B and interaction terms like H as well as
F, B, and L have a positive effect. The impact of selected SIS factors such as H, L, F, R and B on
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dynamic MP of Nylon 12 samples depends on the understanding of P-value of ANOVA for
designated working factors on MPs.

Table 3. ANOVA results of Storage Modulus
Degree of Adjusted Sum of Adjusted Mean

Basis F-value P-value
Freedom Squares Squares
Model 19 4.70668E+19 2.47720E+18 0.56 0.912
Linear 5 1.91773E+19 3.83545E+18 0.87 0.511
H 1 1.36875E+19 1.36875E+19 3.10 0.086
L 1 9.80100E+15 9.80100E+15 0.00 0.963
F 1 9.54855E+17 9.54855E+17 0.22 0.645
R 1 2.91328E+18 2.91328E+18 0.66 0.422
B 1 1.61179E+18 1.61179E+18 0.36 0.549
Square 4 1.07626E+19 2.69064E+18 0.61 0.659
H*H 1 1.24113E+18 1.24113E+18 0.28 0.599
L*L 1 3.34209E+18 3.34209E+18 0.76 0.390
F*F 1 1.19964E+18 1.19964E+18 0.27 0.605
R*R 1 1.48957E+18 1.48957E+18 0.34 0.565
2-Way Interaction 10 1.71270E+19 1.71270E+18 0.39 0.945
H*L 1 1.98752E+18 1.98752E+18 0.45 0.506
H*F 1 2.64903E+18 2.64903E+18 0.60 0.443
H*R 1 3.02888E+18 3.02888E+18 0.69 0.413
H*B 1 4.14123E+18 4.14123E+18 0.94 0.339
L*F 1 4.49250E+16 4.49250E+16 0.01 0.920
L*R 1 4.55297E+17 4.55297E+17 0.10 0.750
L*B 1 2.11897E+18 2.11897E+18 0.48 0.493
F*R 1 4.57531E+14 4.57531E+14 0.00 0.992
FB 1 3.90833E+17 3.90833E+17 0.09 0.768
R*B 1 2.30989E+18 2.30989E+18 0.52 0.474
Error 40 1.76866E+20 4.42166E+18
Lack-of-Fit 30 1.04758E+20 3.49193E+18 0.48 0.939
Pure Error 10 7.21084E+19 7.21084E+18
Total 59 2.23933E+20
R-sq 80.02%
Adj. R-squared 79.17
Pred. R-squared 81.16
Table 4. ANOVA results of Loss Modulus
Basi Degree of  Adjusted Sum of  Adjusted Mean
asis F-value P-value
Freedom Squares Squares
Model 19 5.58278E+17 2.93831E+16 0.46 0.965
Linear 5 1.80761E+17 3.61521E+16 0.56 0.727
H 1 1.30152E+17 1.30152E+17 2.03 0.162
L 1 1.76915E+15 1.76915E+15 0.03 0.869
F 1 8.29787E+15 8.29787E+15 0.13 0.721
R 1 3.20972E+16 3.20972E+16 0.50 0.483
B 1 8.44481E+15 8.44481E+15 0.13 0.718
Square 4 1.42818E+17 3.57046E+16 0.56 0.695
H*H 1 1.57617E+15 1.57617E+15 0.02 0.876
L*L 1 4.68085E+16 4.68085E+16 0.73 0.398
F*F 1 2.14300E+16 2.14300E+16 0.33 0.566
R*R 1 4.00908E+16 4.00908E+16 0.63 0.434
2-Way Interaction 10 2.34699E+17 2.34699E+16 0.37 0.954
H*L 1 2.00183E+16 2.00183E+16 0.31 0.579
H*F 1 2.75425E+16 2.75425E+16 0.43 0.516
H*R 1 4.29558E+16 4.29558E+16 0.67 0.418
H*B 1 4.30239E+16 4.30239E+16 0.67 0.417
L*F 1 5.14779E+14 5.14779E+14 0.01 0.929
L*R 1 1.64299E+15 1.64299E+15 0.03 0.874
L*B 1 4.36242E+16 4.36242E+16 0.68 0.414
F*R 1 3.83754E+15 3.83754E+15 0.06 0.808
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F*B 1 6.25288E+15 6.25288E+15 0.10 0.756
R*B 1 4,52863E+16 4.52863E+16 0.71 0.406
Error 40 2.56309E+18 6.40774E+16
Lack-of-Fit 30 1.59477E+18 5.31591E+16 0.55 0.900
Pure Error 10 9.68321E+17 9.68321E+16
Total 59 3.12137E+18
R-squared 81.04%
Adj. R-squared 85.97
Pred. R-squared 71.16
Table 5. ANOVA results of Tan &
Basis Degree of  Adjusted Sum Adjusted Mean F-value p-value
Freedom of Squares Squares
Model 19 0.001071 0.000056 0.80 0.692
Linear 5 0.000099 0.000020 0.28 0.920
H 1 0.000001 0.000001 0.01 0.909
L 1 0.000005 0.000005 0.07 0.787
F 1 0.000053 0.000053 0.75 0.392
R 1 0.000018 0.000018 0.26 0.612
B 1 0.000022 0.000022 0.32 0.577
Square 4 0.000239 0.000060 0.85 0.501
H*H 1 0.000160 0.000160 2.27 0.139
L*L 1 0.000002 0.000002 0.03 0.856
F*F 1 0.000002 0.000002 0.03 0.866
R*R 1 0.000145 0.000145 2.06 0.159
2-Way Interaction 10 0.000732 0.000073 1.04 0.428
H*L 1 0.000060 0.000060 0.85 0.362
H*F 1 0.000011 0.000011 0.16 0.689
H*R 1 0.000065 0.000065 0.92 0.343
H*B 1 0.000045 0.000045 0.64 0.427
L*F 1 0.000035 0.000035 0.50 0.485
L*R 1 0.000092 0.000092 1.30 0.260
L*B 1 0.000121 0.000121 1.72 0.198
F*R 1 0.000173 0.000173 2.46 0.125
F*B 1 0.000032 0.000032 0.45 0.504
R*B 1 0.000098 0.000098 1.40 0.244
Error 40 0.002812 0.000070
Lack-of-Fit 30 0.002510 0.000084 2.78 0.046
Pure Error 10 0.000301 0.000030
Total 59 0.003882
R-squared 81.04%
Adj. R-squared 76.97%
Pred. R-squared 81.23%

Heater power (H) showing a substantial effect on the MP of Selective Inhibitor Sintering
process is achieved. An increase of H (from 25 to 45W) increases the heat transmission into
powdered nylon bed resulting into the quick melting of it placed at inhibitor. But inhibitor region
shortens the flow of nylon12 particles which are rushing in it and instead of flowing inside, the
molten nylon 12 flows out. Melting of the powder at inhibition influence the component's accuracy
decreases the MP because of the over melting of polymer powder. Parts produced with lower H =
25 W exhibits suitable sintering characteristics, and density improves MP. The factor F shown the
nominal impact on LM and tan & because increasing F resulted in the very small change in
mechanical properties. The factor R also showed the nominal impact of it on SM, LM, and tan
when R varied (from 170 to 250 mm/s). But higher feed rates increase the densification of powder
result in improved MP. Bed temperature (B) was not found affecting MP. Still, this factor plays a
role in heating bed or support below the melting point of nylon powder during sintering for
reducing thermal alteration to initiate fusion between consecutive layers. Increasing B lessens the
cooling rate. The strength and density of the components found useful at maximum value of B
(Kruth et al., 2004).

The experimental responses showed that the selected factors were exhibiting a significant role in
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MP of components produced using the SIS process. The next step is the optimization of factors for
finding the optimal set of working factors to fabricate the components with the enhanced dynamic MP.
Predicted factors levels of H, L, F, R, and B improve the dynamic MP (SM, LM, and Tan §).

3.1. MROPSO Analysis results

Three outputs, such as SM, LM, and Tan 9, were considered in this study. However, all three
objectives cannot be valid concurrently for manufacturing products. The selection of outputs are
solely governed by the need of a design engineer. So, two outputs at a time will be optimized
considering the third one as constraint. Third output controlled value is taken from the
experimental inspections. The objective function required for MROPSO is provided by an
empirical model obtained between the factors and outputs developed from the ANOVA to solve the
optimization of the problem. In the current work, all the objectives (SM, LM, and Tan 9) are to be
maximized, which are the functions of factors H, L, F, R, and B. Hence, the objective functions SM,
LM and Tannd are switched into minimization mode and the objective functions are altered as below:

Obijective 1= Minimize (1/SM) = - (SM);

Obijective 2= Minimize (1/LM) = - (LM);

Objective 3= Minimize (1/Tand) = - (Tand).

Three optimization problems were designed considering two outputs as objectives and the
third one as a constraint. The empirical models from Equation (10) to Equation (12) were used as

functional relationships in MROPSO coded in MATLAB® R20 for solving the following
minimization cases.

Case 1: Maximizing SM and LM subjected to Tan & > 0.1189946 is the highest value
acquired from experimentation (refer to Table 2).

Case 2: Maximizing SM and Tan § subjected to LM > 1243090200 is the maximum value
from the experimentation (refer to Table 2).

Case 3: Maximizing the LM and Tan 6 subjected to SM > 11034210000 is the highest value
acquired from the experimentation (refer Table 2).
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Instead of maximization of the objective, an equivalent/consistent minimization function is
to be utilized in the MATLAB program by using -ve sign. Simulation is performed to establish the
capability of the MROPSO algorithm. The initial population was set to 100 for the present
algorithm. The factors applied to MROPSO such as the initial population size =100, the inertia
weight= 0.5(rand+1)/2, and both the ¢; = ¢, = 1.5 (cognitive and social factor). This developed
three sets of Pareto-fronts viz. SM and LM, SM, and Tan & and LM and Tan & were generating an
optimal solution for the outputs.

Table 6. Pareto optimal solution for SM and LM

V H L F R B SM LM
1 44,9999 0.39996 9.04575 211.015 81.967 5924708534.4 723844445.2
2 42.8275 0.20091 6.0417 207.351 99.995 9130128036.5 1011656247.2
3 44,9804 0.39994 6.61465 210.051 93.073 8067534579.9 960660497.6
4 44,9486 0.399995 6.00953 206.309 99.999 8859230241.1 1042880230.2
5 44.9820 0.39996 6.33328 207.885 99.293 8715615682 1029274430.4
6 44,9887 0.39995 7.33068 210.679 85.554 7192003725 868714981.6
7 44.9889 0.39996 6.58807 208.858 96.921 8429981472.9 999562296
8 44,9950 0.39995 7.0801 210.755 88.883 7561440353.2 907810531
9 44,9986 0.39995 8.6477 211.015 81.969 6211135912.1 758448627
10 44,9965 0.39989 7.4896 210.865 83.447 6950748308 843105766
11 44,9991 0.39994 8.8882 211.018 82.007 6045551551 738441940.3
12 44,9913 0.39995 7.4464 210.937 85.458 7136826018 862677927.6
13 43.3957 0.2185 6.0427 206.519 99.999 8864161585.3 988913394
14 44,9998 0.39997 8.7743 211.013 81.98 6124977428.7 748088085.6
15 43.3529 0.20264 6.2368 208.202 98.62 9022837871.6 1007553740.8
16 44,9926 0.39995 7.2487 210.841 82.688 6977073963.7 846167762.6
17 44,9932 0.39996 7.0318 210.919 97.350 8302189915.8 985901736
18 44,9887 0.39989 7.2854 209.465 86.207 7273473843.7 877613601.7
19 44,9997 0.39996 8.4621 211.004 82.081 6340261047.3 773756145
20 44,9988 0.39996 8.5549 211.004 82.030 6277244457.7 766292593.6
21 44,9971 0.39997 6.8887 210.736 90.922 7796964770.9 932573507.1
22 44,9999 0.39995 7.0801 210.763 88.883 7560768645.4 907785426.5
23 44,9902 0.39995 7.07 209.713 90.643 7727176086.8 925554980.6
24 44,9950 0.39993 7.0483 210.795 86.613 7376508905.4 888267890.7
25 44,9959 0.39996 7.0195 209.4191 92.466 7904323642.1 944422747.2
26 44,9992 0.39993 6.811 210.957 93.085 8004065603.2 954305590
27 44,9592 0.39999 6.5726 207.315 97.518 8510339407.9 1008248563.1
28 44,9918 0.39996 6.4687 207.989 99.107 8666798648.7 1024699181.8
29 44,9973 0.39998 6.8113 210.333 89.060 7661032431.3 918165668.9
30 44,9955 0.39995 7.756 210.804 82.129 6728780903.4 819033814.6
31 44,9973 0.39995 8.1996 210.929 82.168 6504226679.7 793027808.8
32 44,9969 0.39996 7.9227 210.997 82.120 6646994296.7 809666608.4
33 44.9963 0.39996 6.7059 209.121 94.229 8156384944 970782177.4
34 42.8426 0.20091 6.0418 207.36 99.980 9129536399.7 1011735225.61
35 44,9748 0.39997 7.2670 210.345 88.407 7462124682.6 897183174.75
Table 7. Pareto optimal solution for SM and Tan &
No. H L F R B SM Tan &
1 44,965 0.39998 7.0713 203.464 99.975 9164652577.07 0.128090
2 26.421 0.3998 7.983 224.035 99.939 7753792890.24 0.13065
3 25.008 0.39996 8.7997 233.248 99.923 7395642921.71 0.133078
4 44,998 0.39996 7.4594 231.285 98.301 8599420961.33 0.1306331
5 44.259 0.39995 6.859 203.302 99.998 9178155159.79 0.127097
6 25.872 0.39995 8.118 232.552 99.808 7609447790.06 0.131897
7 25.021 0.39995 8.630 232.579 99.832 7435574124.03 0.13302
8 44,995 0.39992 7.374 231.533 99.653 8692620834.61 0.130621
9 44,997 0.39991 7.472 231.673 97.811 8556669684.47 0.130635
10 26.171 0.39979 7.983 224.160 99.939 7716903120.15 0.130928
11 44975 0.39995 7.371 226.436 99.834 8820357132 0.130538
12 44,963 0.39991 7.165 215.775 99.902 9032787997.85 0.129806
13 44,967 0.39989 7.163 217.011 99.707 9000666790.63 0.129912
14 44,997 0.39991 7.472 231.548 97.811 8559539904.75 0.13064
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15 25.008 0.39996 8.7998 233.248 99.923 7395642921.71 0.133078

16 25.570 0.39991 8.3592 227.457 99.822 7590061639.38 0.13202

17 44,978 0.39992 7.1304 219.824 99.918 8976206045.61 0.13016

18 25.185 0.39979 8.2242 230.000 99.948 7523698616.22 0.132621

19 44,996 0.39996 7.4314 230.694 98.919 8657179152.30 0.13063

20 26.683 0.39983 8.0629 227.245 99.914 7768727921.27 0.13069

21 44,987 0.39992 7.4256 220.628 99.765 8915692118.92 0.1302997

22 26.114 0.39986 8.110 226.893 99.816 7689751140.07 0.131269

23 44977 0.39994 7.354 228.609 99.661 8764367758.94 0.130584

24 44,953 0.39991 7.1299 213.046 99.832 9065435409.14 0.129483

25 44,982 0.39994 7.4082 221.923 99.797 8898652126.39 0.13037

26 25.649 0.39995 8.2951 232.471 99.774 7567001991.38 0.13219

27 44,991 0.39995 7.3739 223.126 99.684 8874086796.99 0.13043

28 44,968 0.39996 7.0978 221.67 99.87 8944987609.83 0.13026

29 44,9955 0.399951 7.4231 231.452 99.201 8658742182.09 0.130624

30 44,951 0.39977 7.1135 208.757 99.801 9106268948.89 0.12891

31 44,993 0.39995 7.3534 230.197 99.656 8727879798.19 0.13062

32 25.234 0.3998 8.3649 233.002 99.787 7493506107.19 0.13272

33 44977 0.3999 7.2290 228.359 99.661 8785426350.75 0.13057

34 25.008 0.3999 8.5498 233.498 99.923 7435988478.47 0.133067

35 26.683 0.3998 8.3129 226.995 99.914 7751000127 0.130758

Table 8. Pareto optimal solution for LM and Tan &

No. H L F R B Tand LM
1 25.0002 0.3999997 8.6996 235.46 99.996 0.133141 846014347.03
2 44,9939 0.399996 6.9805 215.02 99.996 0.12969 1024981380.7
3 44,9982 0.399991 8.5487 230.59 89.47 0.13095 882589439.71
4 44,9967 0.399998 7.4075 229.78 99.397 0.13062 981396856.3
5 43.5309 0.399989 6.8444 214,74 99.998 0.12808 1017647892.2
6 44,9966 0.399978 8.4348 230.30 89.65 0.130933 889229745.75
7 44,995 0.399957 8.0974 229.43 91.82 0.13079 917103039.78
8 25.282 0.399976 8.2978 232.72 99.85 0.132648 862488559.63
9 44,996 0.399988 7.3087 228.38 99.472 0.130598 987585226.18
10 44,988 0.399964 7.688 229.79 94.056 0.130668 940968133.93
11 44,9968 0.399972 8.1541 229.92 93.266 0.130748 923026404.8
12 44,994 0.399995 7.2976 218.46 99.859 0.130128 1016207836.7
13 44,994 0.399988 7.2032 216.10 99.637 0.129875 1019656895
14 25.178 0.399443 8.6110 235.43 99.989 0.132893 848279975.4
15 44,996 0.399979 7.4335 229.87 97.669 0.130623 969031585.1
16 44,994 0.399977 7.1800 222.04 99.825 0.130334 1008789818.4
17 25.089 0.399999 8.1579 232.05 99.992 0.132847 863863284.69
18 26.037 0.399959 8.0292 229.97 97.683 0.131165 876796307.01
19 44,993 0.399995 7.3196 222.71 99.503 0.130395 1003609192.5
20 44,995 0.399986 7.2452 226.73 99.781 0.130556 995370378.9
21 44,997 0.399979 8.2831 230.30 89.671 0.130911 895225089.2
22 44,984 0.399943 8.1605 230.30 90.050 0.130858 901712593.5
23 26.181 0.399851 7.884 228.77 98.524 0.131002 879765304.6
24 44,996 0.399977 7.5011 229.90 95.957 0.130637 956484234.7
25 44,997 0.399975 8.0347 229.96 94.163 0.130714 932442677.2
26 44,996 0.399983 7.8994 230.21 91.909 0.130764 921182596.
27 44,997 0.399994 7.259 229.09 99.476 0.130609 985909428.1
28 44,986 0.39996 8.1302 229.64 91.544 0.130789 913758653.7
29 44,997 0.399984 8.4348 230.26 89.822 0.130924 890424248.2
30 44,997 0.399996 7.6603 230.22 96.011 0.130657 953127216.2
31 44,987 0.399995 7.3208 223.95 99.452 0.130447 1000008964.9
32 25.431 0.399933 8.2685 231.1 98.285 0.132122 868067951
33 25.781 0.399742 8.0653 230.42 99.799 0.131864 872679574
34 44,999 0.39998 7.5751 229.75 97.057 0.13064 963074843.1
35 44,996 0.39998 7.5439 229.7 97.089 0.13063 963809808.8
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Table 9. Best ND solution for three cases

Objective values Normalized
SM LM Tan § objective

Composite

No. H L F R B
score

Weighted normalized

1 42.82750.20091 6.0417 207.351 99.995 9130128036.5 1011656247.2 0.1299 1 0.5224 0.1406 0.4 0.2089 0.028 0.6369

2 44963 0.39991 7.165 215.775 99.902 9032787997.85 1022302908.3 0.129810.6517 1 0 02607 04 0 0.6607
3 44987 0.399995 7.3208 223.95 99.452 8850622722.4 1000008964.9 0.13045 0 0 1 0 0 0.2 0.2

Figure 2 (a), (b), and (c) show the Pareto-front for SM and LM, SM and tan §, and LM and
tan 9, respectively, and a corresponding sample set of the optimal solutions have been provided in
Table 6, 7 and 8. Yet, usage of MROPSO vyields in a huge number of ND solutions for improving
the grouping of objectives of MPs viz. SM-LM, SM-tan 8, and LM-tan 8. The different results of
the Pareto front achieved from MROPSO were graded by the composite scores of MDT for
selecting the finest solution. The decision matrix is standardized/normalized using Equation 8
accurately with the “Objective Weights (OW)” that were established for the “Standardized Output
(SO)” values by employing the MDT by means of Equation 9. They are converted into “Weighted
Obijective Functional (WOF)” values by multiplication of the SO values and the OW. The optimum
solution is nominated on the basis of their composite scores obtained by the adding all the WOF
values of every alternative. The outputs having the maximum combined score are preferred as the
finest solution. Table 9 showing the top-graded solution for various grouping of many outputs.

4. Conclusions

The study presented a joint technique of ANOVA allied with multi-response PSO for the
optimization of the mechanical properties of SIS manufacturing process on Nylon 12 material.
Secondly, MDT of OW estimation was conducted to evaluate the weights of the factors. The
compound grade for all the ND solutions was determined by the summation of the WO values. The
finest solution is chosen by considering the maximum out of all ND solution to increase
objectiveness and preciseness in the decision making for the inspectors. This investigation provides
an operative guide to select optimal factor settings for achieving the desired MP of the SIS process
to the instructor and experts. From the data of experiments sections and exploration, the following
inferences can be drawn:

1. Higher the Heater power (H) showed the MP decreasing, but the optimum value is
contributing to maintaining the maximum MP.

2. The increase of layer height also decreasing the MP, and its minimum value is preferred
due to the density variation of components at their higher layer heights.

3. The increasing effect of F found not affecting SM but nominally increased LM and tan 6.
Factor R also has shown a nominal rise in the MP.

4. Factor B did not show any role in MP in experiments, but its value is adopted by
MROPSO analysis.

5. From MROPSO, all factors at their different levels presented their corresponding
responses as a pool of many solutions, which covers the various levels of factors to
maximize the responses as a hand guide to design and production engineers. Pareto front
solutions for three responses using MDT, it is inferred that best solution is having factor
set of H=42.8275 W, L =0.20091 pm, F = 6.0417 mm/s, R = 207.351 mm/s and B =
99.995°C produce very improved MP to higher accuracy level.

6. From MROPSO results, it is also seen. B is the most insignificant factor as B remains the
same for most of the optimal solutions to maximize the responses.
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