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Abstract: Modern autonomous systems require high-throughput, reliable vision pipelines with real-time 

guarantees. This paper presents a hybrid Python-Rust architecture that leverages synchronized shared 

memory and introduces a novel partial-blocking inter-process communication (IPC) model to decouple 

perception modules and enable parallelism without GIL-induced bottlenecks. In order to ensure a consistent 

data handling across asynchronous pipelines, the proposed system embeds lightweight runtime verification 

through watchdogs and health monitoring, and avoids redundant memory copying through efficient shared 

buffers. Across embedded and desktop platforms, this system delivers a fourfold speedup over naive 

multiprocessing while reducing the memory and processing overhead. The system is evaluated under various 

runtime configurations and demonstrates real-world applicability on a 1:10 scale autonomous vehicle. Its 

architecture provides a scalable foundation for safety-critical, real-time perception pipelines for robotics 

applications. 
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Accelerarea viziunii inteligente a vehiculelor:  

o arhitectură hibridă Python-Rust cu comunicare  

inter-procese cu blocare parțială 
Rezumat: Sistemele autonome moderne necesită pipeline-uri de vizualizare fiabile, cu debit ridicat și 

garanții în timp real. Acest articol prezintă o arhitectură hibridă Python-Rust care utilizează memorie 

partajată sincronizată și introduce un model nou de comunicare între procese (IPC) cu blocare parțială, pentru 

a decupla modulele de percepție și a permite paralelismul fără blocaje induse de GIL. Pentru a asigura o 

gestionare consistentă a datelor în pipeline-urile asincrone, sistemul propus include verificări ușoare la rulare 

prin watchdog-uri și monitorizarea stării de sănătate (se referă la starea internă a sistemului, funcționarea 

componentelor, detectarea erorilor sau a problemelor înainte să afecteze procesul), evitând totodată copiile 

redundante de memorie prin utilizarea eficientă a bufferelor partajate. Pe platformele integrate și desktop, 

acest sistem oferă o accelerare de patru ori mai mare față de multiprocessing-ul simplist, reducând totodată 

consumul de memorie și suprasarcina de procesare. Sistemul este evaluat în diverse configurații de rulare și 

demonstrează aplicabilitate în condiții reale pe un vehicul autonom la scară 1:10. Arhitectura oferă o bază 

scalabilă pentru pipeline-uri de percepție în timp real, critice pentru siguranță, în aplicații de robotică. 

Cuvinte-cheie: Vehicule inteligente, Viziune în timp real, IPC cu memorie partajată, Integrare Python-Rust, 

Comunicare cu blocare parțială. 

 

1. Introduction 

Advanced driver-assistance systems (ADAS) and autonomous cars (Xu, Zhang & Sun, 2025) 

base their efficiency on high-performance perception modern autonomous systems. The systems 

must process huge volumes of sensor data in real time continuously to ensure accurate situational 

awareness, and as a result, the computational efficiency and architectural scalability are the 

overriding design priorities (Rosique et al., 2019). Consequently, the performance or latencies in 

these pipelines can have a direct impact on their safety, reliability, and responsiveness, especially 

in dynamic, high-risk environments like in ADAS. 
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While building such systems one has to overcome a number of challenges. Developers must 

integrate computer vision algorithms, machine learning models. Hardware-specific optimizations 

within a cohesive software architecture should support modular development, real-time 

performance, and cross-platform compatibility. Moreover, the increasing complexity of the 

perception tasks necessitates a collaborative and scalable development model. Different modules - 

from low-level data acquisition to high-level semantic interpretation - should be independently 

developed, tested, and deployed. 

However, it is well known that the conventional single-language systems often fail to 

balance rapid prototyping needs with runtime efficiency. A well accepted solution, Python, while 

dominant in the AI and CV ecosystem due to its flexibility and extensive libraries, suffers from: 1) 

Global Interpreter Lock (GIL) constraints and, 2) limited concurrency on processing bound tasks. 

Meanwhile, low-level systems languages like Rust offer deterministic performance and safety but 

lack the expressive tooling ecosystem for vision development.  

This paper proposes an architecture that is concurrent, allows for a modular vision and 

tightly integrates Python-based high-level Computer Vision (CV) pipelines with a performant Rust 

backend for data transport and synchronization. In its design the common IPC bottlenecks are 

eliminated by using synchronized shared memory and a novel partial-blocking communication 

strategy is introduced. This allows faster components to progress without waiting for slower 

modules. This is an essential feature for the real-time systems where different tasks vary 

significantly in complexity. 

The remainder of this paper is organized as follows: Section 2 reviews related work across 

perception systems, middleware frameworks, and multi-language integration. Section 3 outlines the 

architectural requirements and introduces the Producer-Consumer communication strategies, 

including the proposed partial-blocking approach. Section 4 details the methodology, pipeline 

structure, concurrency design, and the SharedMessage specification with its implementation 

variants. Section 5 presents the evaluation, including benchmarks, hardware-software testing, 

operational modes, and a real-world deployment on a 1:10 scale autonomous vehicle. Section 6 

discusses limitations and future directions, the final section concludes with key findings and 

contributions. 

2. Related work 

Real-Time (RT) Computer Vision architectures for autonomous vehicles have been widely 

investigated, particularly with respect to modularity, throughput, and robustness. Below, there are 

reviews of the relevant contributions across perception systems, middleware frameworks, multi-

language integration, and runtime safety. 

Perception Systems and Sensor Fusion. Rosique et al. (2019) provide a comprehensive 

survey of the perception systems, sensor modalities, and simulation tools for autonomous vehicles. 

The previous works (Jahromi, Tulabandhula & Cetin, 2019; Gu, Wang & Qin, 2021) proposed real-

time, low-latency architectures for multi-sensor systems. The importance of the hybrid offline-online 

paradigms for enhancing the system reliability was depicted in Ros et al. (2015). 

Vision Architectures and Middleware. In the early embedded CV systems (Sridharan & 

Stone, 2005), the latency-performance tradeoffs in resource-constrained environments were discussed. 

Middleware frameworks like ROS2 (Macenski et al., 2022) and visualization tools like RViz (Kam et 

al., 2015) demonstrate the transition toward distributed, modular runtime systems with built-in 

support for visualization and debugging. 

Multi-Language Integration and IPC. The integration of Python and Rust through PyO3 

(Flitton, 2022) supports the hybrid architectures that combine development flexibility with high-

performance execution. The foundations for the shared-memory synchronization, which are critical 

for the present partial-blocking IPC design was presented in Scott & Brown (2013). 
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3. Architecture requirements  

To design an effective RT CV architecture specifically for autonomous vehicles necessitates 

addressing several critical requirements to ensure both high performance and developer 

accessibility. 

Foremost, the system must operate in both RT and offline modes. RT processing is critical  

for in-vehicle deployment, where timely responses are critical (Jahromi, Tulabandhula & Cetin, 

2019; Gu, Wang & Qin, 2021). The offline capability, on the other hand, enables efficient 

debugging, development, and testing using pre-recorded data streams (Ros et al., 2015). 

Secondly, the integration with the Python programming language is essential. Python 

continues to be a cornerstone of the modern CV development, thanks to its extensive ecosystem of 

libraries such as OpenCV (Bradski, 2000), TensorFlow (Abadi et al., 2016), and PyTorch (Paszke. 

et al., 2019). Python-based workflows should be supported for the architectures used for research 

and rapid prototyping. Thirdly, the system to be must support the efficient handling of video data. 

This includes the ability to save both raw input and processed output streams with minimal 

performance overhead - critical for debugging, post-run analysis, and RT performance evaluation. 

Finally, RT visualization is vital for monitoring system’s behaviour both during development 

and deployment. Widely adopted tools like Rviz (Kam et al., 2015), integrated within ROS2 

(Macenski et al., 2022), exemplify the importance of live visualization for system’s validation and 

user assurance. 

Together, all these requirements define a flexible and performant architecture capable of 

supporting RT perception workloads not only in experimental but also in operational settings. 

3.1. Producer-Consumer model 

The Producer-Consumer model is a fundamental element of any RT vision architecture. It 

reigns the flow of data from a producer to one or more consumers. This proposed model supports 

three distinct strategies: standard Non-Blocking (NB), Full-Blocking (FB), and the newly proposed 

Partial-Blocking Approach (PBA). 

In the NB strategy, the Producer continuously publishes new frames without waiting for 

Consumers to finish processing. Consumers operate independently. Each of them processes the 

most recent data available in its own rhythm. While this maximizes the throughput, it may also 

cause synchronization issues, as Consumers might work on different frames simultaneously. The 

method described here is well-suited for tasks where responsiveness outweighs consistency, such 

as the RT monitoring. 

The FB strategy enforces synchronization by requiring the Producer to wait until all 

Consumers have processed the current frame before publishing the next one. Although this 

guarantees consistency across all Consumers, it introduces latency and reduces the throughput. This 

approach is best suited for pipeline development and testing scenarios, where the uniform frame 

handling is critical. 

The present PBA strategy reaches a fair balance between these extremes. The Producer may 

release new data as soon as at least one Consumer has begun processing the previous frame. This 

improves the throughput by eliminating the idle time, ensuring that every frame is processed by at 

least one Consumer. It is particularly effective for the RT systems like the autonomous driving, 

where fast, safety-critical tasks must run concurrently with slower planning or logging modules. 

With the combination of these three strategies, the Producer-Consumer model offers a 

flexible mechanism for managing data flow, enabling the architecture to well balance consistency, 

responsiveness, and performance based on the current application’s needs. 
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4. Methodology 

4.1. Pipeline architecture 

To organize the vision processing into modules a sequential pipeline structure, as originally 

presented by Meunier (1995) is augmented to fit the proposed requirements. The raw frame, as well 

as any processed frames produced so far and the extracted features, like bounding boxes or lane 

parameters, are combined into a PipeData object, that also features a timing component to track per 

module performance. 

Then a Filter is used to represent a single processing step. Whether performing region-of-

interest extraction, grayscale conversion, edge detection, or deep-learning-based object detection, 

upon invocation, the filter reads fields from the input PipeData, applies its algorithm to the current 

frame, and returns a new PipeData that updates the processed-frame field and appends any newly 

extracted features. The system should remain highly extensible. It may be done by isolating each 

processing step as a Filter and encapsulating both frames and features within PipeData. 

In the simplest, fully sequential setup, filters are chained one after another: the raw frame 

enters Filter 1, its output feeds Filter 2, and so on. Downstream components - such as decision-

making or visualization - receive the final PipeData after the last filter completes. Optionally, an 

intermediate saving module can record either the raw input or the fully processed frame at any 

point in this processing chain. 

Figure 1 illustrates the sequence of Filters used as the baseline sequential design in these 

experiments. It features an initial frame capture step, followed by transformation and processing 

steps and ending in visualization, for a real-time inspection of the detected features, and saving. 

 

 

Figure 1. Sequential Processing Architecture 

 

4.2. Concurrency and parallelism 

The sequential design is conceptually simple: RT perception pipelines for intelligent vehicles 

typically execute multiple tasks-lane detection, traffic sign detection, traffic-light recognition, and 

pedestrian detection - in parallel on each frame. Figure 2 shows this pattern: a single raw frame is 

dispatched into four branches, each performing cropping and a specialized filter cascade. The 

individual PipeData outputs are merged before the downstream decision-making. 

In Python, achieving true parallelism for Central Processing Unit (CPU)-bound filters is 

hindered by the Global Interpreter Lock (GIL), which serializes the bytecode execution within a 

single process. Although multithreading can interleave I/O or Graphics Processing Unit (GPU)-

bound operations, it cannot fully exploit multicore CPUs for Python filter logic. Consequently, 

each branch must run in its own process to bypass the GIL. 
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Figure 2. Simple Autonomous Driving Vision Pipeline 

 

A naive multiprocessing implementation, exemplified in Figure 3, would serialize the raw 

frame and send a copy to each worker via pipes. Each worker deserializes, executes its filter chain, 

then serializes the updated PipeData back to the manager. This design, however, incurs two key 

drawbacks: (1) every frame is copied and serialized for each branch, and (2) the overall framerate 

is limited by the slowest branch. When one branch takes 40ms to process while others take 10ms, 

iteration time is 40ms with more efficient branches waiting idly for most of each cycle. 

This design yields high overhead, especially with large PipeData objects containing high-

resolution frames and greater than one extracted feature based on the large copying, serialization, 

and deserialization of the same data between different branches that is memory and time inefficient. 

 

 

Figure 3. Naive Multiprocessing Architecture 

 

4.3. Proposed SharedMessage based architecture 

In order to handle the IPC overhead and ensure runtime longevity, the authors employ an 

array of shared-memory buffers rather than per-branch pipes. The manager allocates a shared-

memory space of a size sufficient for a single PipeData object as input to the pipeline. As shown in 

Figure 4, worker processes map this space during the startup, read the raw frame in place, and store 

its filter outputs (processed frame slice and feature data) into the corresponding shared memory slot. 

The manager can then read at its convenience the streams of the latest PipeData from any worker, 

aggregate the results, and push them downstream to visualization or decision-making components. 

All in all this architecture entails N + 2 shared memory buffers: one for the raw frame, one for each 

output of a worker, and one for the manager to broadcast the combined results, which is a 

significant reduction from 2N + 2 pipes in the naive approach. 
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Figure 4. SharedMessage Architecture 

Moreover, a naive approach lacks runtime guarantee: if a worker is hung or crashed half-way 

through the process, the manager will block forever waiting for its result. To satisfy the runtime 

verification requirements, all processes need to provide health monitoring and error recovery hooks. 

In the present design, each worker process spawns a background "heartbeat" thread which outputs a 

timestamp every so often to a special shared memory queue. The manager monitors the heartbeats: 

if the timestamp of a branch does not change over a timeout, the manager designates it as 

"unresponsive" and may induce a pre-configured recovery action (restart the branch execution or 

substitute a safe default output). Through embedding monitoring and synchronized shared memory 

IPC in every branch, the system achieves high throughput and runtime guarantee: the speedy 

branches execute ahead without waiting for the sluggish ones, and any fault in a branch can be 

contained, diagnosed, and mitigated in real-time. 

4.3.1. Shared memory and Python 

Although Python's multiprocessing module offers a basic shared memory API, it lacks the 

necessary synchronization primitives to enforce consistent, race-free updates by multiple processes. 

Specifically, there is no simple way to atomically check or update version counters without holding 

a lock, and Python's combined lock/condition-variable abstraction forces all waiters to wake on any 

state change, reducing the efficiency.  

To get over these shortcomings, a higher-level SharedMessage abstraction with explicit 

versioning, an independent atomic version counter, and dedicated mutex and condition variables is 

employed. The abstraction offers integration with all three modes of communication: non-blocking, 

partial-blocking, and full-blocking (as brought in Section 3.1). 

4.4. The SharedMessage specification  

At its core, the SharedMessage consists of the following: 

• A fixed-capacity Message region of size C bytes, allocated at startup; 

• A 64-bit MessageVersion counter (an atomic integer) incremented on each write; 

• A 32-bit MessageSize denoting the number of valid bytes in the current message; 

• A 32-bit ConsumerCount indicating how many reader processes exist; 

• A 32-bit ReadCount that tracks how many readers have consumed the current version; 
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• A flag to signal when the writer has finished sending data; 

• A Mutex (exclusive lock) guarding writes to MessageSize and ReadCount; 

• Two condition variables: WriteCond (notifies readers when a new version is available) 

and ReadCond (notifies the writer when readers have consumed the previous version). 

In Figure 5 there may be seen how the memory layout is including a padding that has the 

size of 40 + C bytes. 

4.4.1. Write methods  

To perform a NB write, the writer first acquires the Mutex, increments MessageVersion, sets 

MessageSize, and copies new data into the Message region. It then resets ReadCount to zero and 

signals all readers via WriteCond before releasing the Mutex. 

 

 

Figure 5. Memory layout of SharedMessage: fields are aligned to enable atomic access to  

MessageVersion, while the Mutex and condition variables reside in shared memory 

 

For FB writes, the writer must wait until Read Count equals Consumer Count, thus ensuring 

every reader has consumed the previous version. It does so by waiting on Read Condvar (releasing 

the mutex while blocked), then repeats the write steps above. Partial-blocking writes only require 

Read Count to reach at least one, allowing the writer to proceed once any reader has consumed the 

prior version. In both blocking modes, the writer sleeps on Read Condvar rather than busy-waiting. 

4.4.2. Read methods 

A non-blocking reader first reads MessageVersion (atomic load). If this version differs from 

its local copy, the reader acquires the Mutex, re-checks MessageVersion (in case it changed while 

waiting), copies the Message into a private buffer, updates its local version, increments ReadCount, 

signals ReadCond (in case the writer is blocked), and releases the mutex. If no new version exists, 

the reader returns immediately. 

A blocking reader acquires the Mutex. Then it checks if MessageVersion has changed. If not, 

it waits on WriteCond until a new version appears or Stopped Flag is set. Once a new version is 

available (or if Stopped Flag indicates no more writes), the reader copies the Message, updates 

ReadCount and MessageVersion, signals ReadCond, and releases the mutex. If StoppedBit is set 

and no unread version remains, the reader returns with no data. 

By separating version checks (atomic, without locking) from protected updates (under a 

mutex), readers encounter minimal overhead checking for new data, and writers avoid unnecessary 
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wakeups. This approach ensures safe, low-latency transfer of large PipeData objects among 

multiple processes. 

4.5. Implementation and benchmarking 

Three approaches to implementing the SharedMessage specification, plus a baseline using 

Python's standard multiprocessing pipes (MP-Pipe) were evaluated. All implementations were 

benchmarked on an Intel i5-12600K processor over 50,000 blocking write-read iterations, using 

mock PipeData objects that emulate real data (initial frame, processed frame, and extracted 

features). Table 1 reports average transfer latencies, while Table 2 shows the total elapsed times for 

resolutions from 256×256 (576 KB) up to 1920×1080 (17.8 MB). 

Table 1. Write-Read Average Latency (ms) 50.000 iterations 

Resolution Size MP-Pipe RS-IPC SHM-LOCK SHM-PTH 

256×256 576 KB 0.247 0.2 0.226 0.233 

512×512 2.25 MB 0.908 0.728 0.796 0.82 

640×480 2.64 MB 1.019 0.898 0.982 0.994 

1280×720 7.91 MB 5.542 4.529 4.762 4.833 

1920×1080 17.80 MB 16.161 11.26 11.35 11.96 

Table 2. Write-Read Total Transfer Time (s) 50.000 iterations 

Resolution Size MP Pipe RS-IPC SHM-LOCK SHM-PTH 

256×256 576 KB 12.336 10.01 11.306 11.67 

512×512 2.25 MB 45.411 36.408 39.789 40.986 

640×480 2.64 MB 50.931 44.895 49.12 49.986 

1280×720 7.91 MB 277.103 226.434 238.106 241.671 

1920×1080 17.80 MB 808.053 562.98 567.252 598.005 

SHM-LOCK. The first prototype used Python's multiprocessing module to allocate shared 

memory and mp.Lock for synchronization. However, mp.Lock cannot be stored directly in the 

shared memory. Instead, it must be passed from parent to child processes, complicating the 

initialization. Furthermore, Python's condition variables are implemented as locks, so a state 

change wakes all waiters, even if only some processes need to proceed. Finally, Python offers no 

native atomic primitives, forcing the operating system to hold the lock whenever checking or 

updating version and stopped flags - adding overhead and reducing the parallel efficiency. 

SHM-PTH. To address the above limitations, the pthread API via Python's ctypes interface 

was used. By loading and invoking pthread_mutex and pthread_cond structures directly in shared 

memory, true in-memory locks and condition variables were obtained. This design aligns with the 

intended layout and avoids the mp.Lock constraints. Nevertheless, it still lacks atomic operations 

for version or stopped-flag checks, so readers and writers must acquire the mutex even when 

simply testing for new data, generating an unnecessary latency. 

RS-IPC. To eliminate the overhead of Python's missing atomic operations, SharedMessage 

was reimplemented in Rust. Rust's standard library provides atomic types (e.g., AtomicU64) and 

allows locks and condition variables in shared memory without the indirection required by Python. 

The Rust functionality to Python was exposed via PyO3 bindings. Although PyO3 adds a small 

invocation overhead, Rust's ability to release Python's GIL during shared-memory operations 

enables true multithreading for concurrent readers and writers. As a result, RS-IPC achieves lower 

latency under contention and can support future optimizations - such as background feeder threads 

- to push write/read times close to zero in the main thread. 

The similarity between RS-IPC (Open Source implementation available at: 

https://github.com/razvanfilea/rs_ipc), SHM-LOCK, and SHM-PTH in raw transfer times indicates 

that most latency arises from bulk memory copies, not the synchronization overhead. However, 

RS-IPC's ability to release the GIL and leverage true multithreading yields greater end-to-end 
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concurrency, especially when multiple frames or feature sets contend for the shared buffer. In 

future work, Rust-based feeder threads are planned to be implemented to perform asynchronous 

writes and reads, effectively reducing the main-thread write/read overhead to near zero. 

The presented results confirm overall that the shared-memory IPC outperforms the pipe 

based solutions by a substantial margin, and that a Rust-backed implementation (RS-IPC) offers 

additional concurrency benefits compared to the pure-Python variants. 

5. Evaluation 

Benchmark experiments on identical video streams and hardware configurations were 

conducted in order to evaluate the proposed architecture, the SharedMessage specification and the 

PB (partial-blocking) communication model. 

5.1. Proposed solution validation 

First, the naive multiprocessing design was measured - one process per branch, sending 

serialized PipeData via pipes, against the proposed shared-memory architecture on a 720p 

prerecorded video of 2,298 frames at uncapped speed. Each run was repeated 10 times with 

insignificant variance in results. 

Figure 6 shows the real time updating hierarchical timing chart that monitors the entire 

system for potential bottlenecks. 

 

Figure 6. Timing Data for the Naive Multiprocessing Architecture 

 

Since the manager synchronizes all four branches before merging, the system throughput is 

constrained by the slowest component-Lane Detection (highlighted in teal), which operates at 

approximately 36 ms per frame. Each processing iteration required 51 ms (corresponding to 20 fps), 

with 76% of the total time spent awaiting completion of the slowest pipeline and the remaining 

24% allocated to I/O and visualization tasks. 

The PipeData object lifecycle (including instantiation, filter execution, serialization and IPC 

write/read operations) analysis showed that the filter execution alone covered 60-80% of the 

iteration duration. The 20-40% was attributed to the IPC overhead. 
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5.1.1. SharedMessage Partial-Blocking mode  

For this mode, each PipeData was instrumented with a Timing object that logs timestamps at 

each stage: (1) instantiation, (2) per-pipeline processing, (3) transfer to the MPManager, (4) 

merging, and (5) delivery to decision-making/visualization. The results are shown in Figure 7. 

Due to an extra IPC transfer (three processes instead of two), the average transfer latency 

rose to 20 ms, although the overall system throughput improved significantly due to its ability to 

use the partial-blocking strategy. In total, processing all frames took 32.39 s (70.94 fps), a 3.5× 

improvement over the naive design that finished in 114.4 s (20.1 fps). 

 

Figure 7. Timing data for the SharedMessage architecture 

5.2. Hardware-Software benchmarking 

Three platforms were evaluated with varying compute and memory resources. Table 3 

summarizes their specifications. 

Table 3. Hardware Configurations for System Testing 

Specification Jetson AGX Orin CUDA Workstation Non-CUDA Workstation 

Processor ARM Cortex-A78AE Intel i5-12600K AMD Ryzen 7 7700 

Clock Speed 2.2 GHz 3.7 GHz 3.8 GHz 

Cores-Threads 12C - 12T 10C - 16T 8C - 16T 

RAM 32 GB LPDDR5 32 GB DDR4 32 GB DDR5 

GPU Nvidia Ampere Nvidia RTX 3090 AMD RX 7700 XT 

GPU Mem 32 GB LPDDR5 24 GB GDDR6X 12 GB GDDR6 

CUDA Cores 2,048 10,496 N/A 

5.3. Operational modes 

To evaluate the proposal, three situations that differ in the trade-offs between throughput, 

visualization, and consistency were defined. Table 4 lists each mode's processing strategy, active 

pipelines, and visualization setting. They are defined as follows: 

• Real-Time (RT) Mode: partial-blocking, minimal visualization (no intermediate 

frames), representing a live autonomous driving scenario. 
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• Development (D) Mode: partial-blocking, intermediate visualization enabled for real 

time monitoring. 

• Analysis (A) Mode: full-blocking, intermediate visualization enabled, every frame 

processed by each pipeline for consistency testing. 

The latter two modes operate with the exact same CPU-only pipelines, 5 lane detectors in 

parallel, to measure the impact of the partial-blocking strategy compared to the full-blocking mode. 

Real-Time Mode. In Real-Time Mode, a single lane detection pipeline was run in parallel 

with two object detection pipelines to simulate a live autonomous driving scenario requiring both 

CPU and GPU processing. The results in Table 5. illustrate the real-time capabilities of this 

architecture, maintaining at least 35 fps across all configurations and resolutions, which is more 

than sufficient for most vision tasks in autonomous driving. 

Table 4. Operational Modes and Their Configuration 

Mode Processing Strategy Active Pipelines Intermediate Visualization 

Real-Time Mode Partial Blocking 1 Lane Det + 2 Obj Det Disabled 

Dev Mode Partial Blocking 5 Lane Det Enabled 

Analysis Mode Full Blocking 5 Lane Det Enabled 

Dev Mode (Partial Blocking) vs. Analysis Mode (Full Blocking). Across all platforms 

and resolutions, Dev Mode achieves roughly a 4 times speedup over Analysis Mode, as shown in 

Table 5. These results demonstrate the effectiveness of the proposed partial-blocking strategy, 

which allows the faster pipelines to progress without waiting for the slower ones, while still fusing 

results from all branches as they become available. Enabling the full-blocking results in similar 

performance to the naive architecture in Figure 3, with its implicit full-blocking, which is in 

accordance with the theoretical analysis.  A demo of Partial vs Full Blocking on Real-Time 

Scenario with Intermediate Visualizations can be seen at: 

https://www.youtube.com/watch?v=HKS9mA1-57E. 

 

Table 5. Dev Mode vs. Analysis Mode Total Times with FPS and Speedup 

Resolution Hardware Dev Mode (PB) Analysis Mode (FB) Speedup 

640×480 CUDA Workstation 24.67 s (93.1 fps) 114.60 s (20.1 fps) 4.63× 
640×480 Non-CUDA Workstation 16.40 s (140.0 fps) 71.40 s (32.2 fps) 4.35× 
640×480 Jetson AGX Orin 37.50 s (61.3 fps) 148.00 s (15.5 fps) 3.95× 

1280×720 CUDA Workstation 34.63 s (66.3 fps) 152.40 s (15.1 fps) 4.39× 
1280×720 Non-CUDA Workstation 31.40 s (73.3 fps) 120.00 s (19.2 fps) 3.82× 
1280×720 Jetson AGX Orin 60.63 s (37.9 fps) 226.63 s (10.1 fps) 3.74× 

1920×1080 CUDA Workstation 59.16 s (38.8 fps) 275.40 s (8.3 fps) 4.67× 
1920×1080 Non-CUDA Workstation 53.01 s (43.4 fps) 205.80 s (11.2 fps) 3.88× 
1920×1080 Jetson AGX Orin 122.23 s (18.8 fps) 453.03 s (5.1 fps) 3.71× 

5.4. Real-World application 

The final experiment aimed to validate the usefulness of the proposed architecture in a real 

scenario. The vehicle depicted in Figure 8 was designed for an international 1:10 scale autonomous 

driving competition in which the authors  participated (Kilyen et al., 2021). The Hardware 

configuration is based on a Raspberry Pi 5 with a 720p camera and a Nvidia Jetson AGX Orin for 

CUDA accelerated object detection.  

The control stack was developed and validated in a simulation environment (Szilagyi, Benta 

& Sacarea, 2024)) and then integrated with the perception pipeline from Figure 2 using the 

proposed architecture. (demo is available at: https://www.youtube.com/watch?v=pzqnW4tQQjw). 



112 Revista Română de Informatică și Automatică, Vol. 35, nr. 3, 101-116, 2025 

http://www.rria.ici.ro   

 

Figure 8. RC vehicle performing traffic light detection, path detection, trajectory  

planning and following on a test track 

5.5. Summary 

The results of the experiments show that the naïve multiprocessing design is indeed limited 

by the slowest branch and suffers from high IPC overhead (51ms per frame, 20fps on the CUDA 

Workstation), while the shared-memory version achieves 70.94 fps on the same hardware, which is 

around a 4 times improvement even with extra inter process transfers. Using the authors’ 

SharedMessage Architecture in partial-blocking communication mode allows for real-time 

performance even on embedded devices like the Jetson AGX Orin (35 fps) and can be used for 

real-world applications. 

6. Limitations and future work 

While the proposed architecture has demonstrated promising results, several limitations and 

areas for potential improvement remain: 

Asynchronous SharedMessage Write and Read Operations: The Shared Memory I/O 

operations are currently synchronous and could be further optimized. Thus, a key opportunity is to 

leverage Rust's multithreading capabilities to implement background feeder threads for 

asynchronous write and read operations, and so to further reduce the execution time in the calling 

process. 

FreeThreaded Python: With the release of Python 3.13 Freethreaded may offer improved 

concurrency by mitigating some of the Global Interpreter Lock (GIL) constraints. This could 

unlock significant performance gains in multi-threaded contexts. The authors plan to develop a 

prototype version of this architecture in Python 3.13 and compare its performance against the 

existing implementation. 

JSON-Based Pipeline Configuration and Editing: Currently, any modification to the pipeline 

involves direct code modifications, which are cumbersome, especially if one does not have a deep 

understanding of the underlying architecture. A JSON-based configuration system paired with a 

user-friendly interface would greatly simplify the development by allowing users to add, remove, 

reorder, change parameters of filters and more dynamically without altering the codebase. 

Benchmark Differing Autonomous Driving Perception Pipelines: While the proposed 

architecture is designed to be flexible and adaptable to various perception tasks, currently tested 

pipelines were developed for the Bosch Future Mobility Challenge (Kilyen, 2021) and offer a 

limited selection of components that should be expanded. Future work should focus on integrating 

and benchmarking the additional pipelines from the literature to validate the architecture in  

more contexts. 
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7. Conclusions 

This paper introduces a modular, concurrent vision architecture that balances performance 

with developer accessibility in an effective manner, useful for robotics applications. Due to the 

combination of Python's rich ecosystem of computer vision libraries and Rust's low-level efficiency 

and safe concurrency, this proposed architecture addresses the common bottlenecks, in particular 

the IPC overhead and the limitations imposed by Python's GIL. The RT performance has been 

achieved through a shared memory design that reduces unnecessary data copies and enables the 

partial-blocking communication mode. It also allows the faster pipelines to operate without being 

stalled by the slower ones. 

The experimental results on multiple hardware platforms (including embedded devices and 

high-end workstations) demonstrate its superior scalability, resource efficiency, and a throughput 

that is compared to the naive multiprocessing or parallel designs based on the standard Python IPC 

primitives. 

The real-world like testing on a 1:10 scale remote control car further validates the 

practicality of this approach by showing its adaptability and responsiveness in an actual 

autonomous driving setting. The architecture's flexibility was further highlighted by supporting 

both RT and offline development modes, permitting convenient debugging, visualization, and data 

recording. 

While the proposed system shows promising results, additional optimizations (such as 

asynchronous read/write in Rust and leveraging Python's future free-threading capabilities) present 

opportunities for even greater performance gains in the next works. 

This approach offers a robust foundation for executing vision pipelines in RT, where 

timeliness and efficiency are at the very top. 
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