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Abstract:  This article addresses the issue of designing a predictor-based event-triggered control strategy for 

cyber physical systems with channel induced delay over the controller – actuator portion of the 

communication channel.  To deal with the conservatism posed on the system performance and stability by the 

channel delay a model-based predictor is first designed and a control policy is subsequently formulated using 

the predictor states. This predicted version of the control policy effectively mitigates the ill effects of the 

channel delay. To ensure the optimum utilization of the channel resources and to reduce the computational 

burden an event-triggered version of the control policy is devised. The event-triggered control proposed in 

this work ensures the Zeno free behavior of the system and the Lyapunov-function-based analytical 

developments reflect the uniform ultimate boundedness (UUB) of the state variables with the prescribed 

system performance. The validation of the effectiveness of the presented control scheme is illustrated with 

the help of numerical simulation.  
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1. Introduction  

A cyber physical system (CPS) can be viewed as a synergistic aggregation of computing 

devices and physical systems interacting with each other via sensors and actuators over a 

communication channel. Thus, CPS is a feedback system engineered to steer some remotely 

operated physical system by leveraging the capabilities of the computer, network, sensor and 

actuator. Technical advancements witnessed in the computing and communication realms have 

enhanced the vitality of this concept by exploring its potential prospects and spreading it over a 

wide spectrum of application areas such as telerobotics, smart grids, unmanned vehicles, traffic 

management, industrial process control, mobile sensor networks, medical equipments and others. 

Several researchers have addressed the issues of CPS modelling and control.   

Although the CPS has a plethora of promising prospects, it is associated with certain 

limitations and constraints posed by the environmental randomness, material characteristics and the 

openness of the architecture. The band width limitation, propagation and actuation delay, data loss, 

channel noise and cyber-attacks are some of the factors which may cause an impairment of the 

system performance (Lee, 2008; Alur, 2015; Zanero, 2017). This work addresses two crucial 

factors affecting the performance of networked systems, namely the channel resource limitation 

and the channel induced delay.    

The network induced delay is one of the factors responsible for the degeneration of the 

system performance and it sometimes even leads to a system instability. It is therefore required to 

augment the baseline control scheme with a delay compensating mechanism to alleviate the effects 

of the delay (Jamaludin & Rohani, 2018; Wang et al., 2011). Various delay compensating 

techniques and analysis of their effectiveness in concern to networked induced delay have been 

cited in the literature (Angeli & Sontag, 1999; Ma et al., 2019; Zhu et al., 2023). 

The model-based predictor techniques have been proved highly effective to compensate the 

effect of a network delay. In comparison to a delay model like pade approximations this technique 

relaxes the constraint of the upper bound on the delay size and thereby allows an accurate 

prediction of the system variables for any arbitrary delay values. The predictors are designed to 

predict the values of the state variables over a prediction horizon equal to a channel delay. The 

predicted states are used to formulate the control scheme. The control term formulated with the 

predictor states effectively results in a delay free feedback loop and thus mitigates the influences of 

the delay. The predictor based delay compensation technique relaxes the conservatism of the delay 
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dependency and has been proved highly effective in the case of an arbitrarily long delay (Tabuada 

2007; Petit & Krstic, 2015; Vafaei & Yazdanpanah, 2017; Lee & Son, 2023).  The event-triggered 

scheme has been proved highly effective to optimize the utilization of communication and 

computing resources. The event-triggering mechanism allows the control signal update and 

transmit only at some discrete instants which are governed by a predesigned event-triggering 

mechanism. These triggering rules are designed as to ensure the system performance within the 

desired limits of stability and performance. This control methodology seems highly effective from 

a resource utilization point of view as it uses computing and communication resources only at 

certain instants rather than in a continuous way.  This scheme, instead of keeping a tight rein on the 

physical systems, tries to keep a balance between system performance and resource utilization (Cai 

et al., 2019; Xie, Ma & Xu, 2022).  

The issue of the event-triggered control of the time delay system has been addressed by some 

researchers. An event triggered under the condition of a delayed channel often complicates the 

situation as extensively delayed control updates may not be able to preserve the system stability. 

This approach points towards the requirement of an accurate prediction model to predict the system 

states in synchronization with the channel delay (Al Issa & Kar, 2022a; Luo et al., 2023). 

The following can be considered as the contribution of this paper:  

• Designing of a Predictor-Based Event-Triggered Control Framework: 

A model-based predictor is designed to precisely estimate the system states over a prediction 

horizon that corresponds to the delay imposed by the channel. This predictor effectively mitigates 

the negative impacts of communication latency by delivering dependable forecasts of future states. 

Utilizing these anticipated states, a policy for event-triggered control is developed to minimise 

superfluous control updates while guaranteeing prompt actuation. 

• Delay Compensation and Stability Guarantees: 

Rigid stability conditions for the proposed predictor are derived using a Lyapunov-

Krasovskii-functional-approach. These standards ensure that the prediction error stays contained 

regardless of the channel-induced delay. In addition, with the suggested predictor-based control 

method, the Lyapunov-based stability requirements are set up to guarantee that the total closed-

loop system is uniformly ultimate bounded (UUB). 

• Avoidance of Zeno Behavior: 

A formal explanation is given to show that the event-triggered mechanism's inter-execution 

time can be contained within a positively definite bound. This finding guarantees that the control 

method may be realistically implemented in real-time networked environments by effectively 

ruling out the possibility of Zeno behaviour. 

This works presents a predictor-based event-triggered control scheme for a class of 

networked nonlinear systems with a channel induced delay.  The following can be considered as 

the main contribution of this paper:   

A model-based predictor is designed to predict the system states over a horizon equal to the 

channel delay. An event triggered control policy is subsequently formulated using the predicted 

states to compensate for the delay.       

The Lyapunov-Krasovskii-functional-based stability norms have been established for the 

predictor, which ensures a bounded prediction error under the condition of arbitrary delay. Also, 

the Lyapunov-based stability conditions have been derived to ensure the uniform ultimate 

boundedness of the closed loop system under the action of a predictor-based control term.     

The existence of a lower bound on the inter-execution time has been proved thereby ruling 

out the possibility of the Zeno behavior.   

The rest of the paper is constituted as follows: Section 2 presents the system preliminaries. 

The predictor design and its stability issues are addressed in Section 3. Section 4 describes the 

design of an event triggered control scheme using predicted states. The validity aspects related to 
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stability under the action of the control scheme and existence of the finite lower bound on the inter 

execution time are also addressed in this section. Section 5 demonstrates the numerical simulation 

study and the conclusion is presented in Section 6.  

2. Preliminaries 

2.1. Sytem Formation 

Consider the following nonlinear system model as the mathematical representation of the 

physical system required to be steered over a communication channel. The physical system along 

with the communication channel and other components such as the controller, sensor and actuator 

constitute the cyber physical system (CPS). The channel attributes such as finite bandwidth and 

induced delay have been accounted during the controller design (Shu, Li & Xiang, 2024).  

( ) ( )

( ) ( )

1 2

1

( ) ( )

( ) ( )n

x t x t

x t f x t u t
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
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control input delayed by   instants. The term ( ) : nf x R R→  represents the system nonlinearity 

and R +  is the delay induced between the controller and actuator.  

To facilitate the subsequent developments, the nonlinear system (1) is expressed as 
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The objective of this work is to develop an event-triggered control policy for the system (1) 

considered under the condition of a cyber transmission with channel delay and finite bandwidth. 

The control term is required to steer the system output towards the desired trajectory ( )dy t  and the 

tracking error converges to the small neighborhood of its origin. 

For circumventing the condition of the finite channel bandwidth, the event-triggered 

mechanism has been proved highly promising. This mechanism requires a sequence of triggering 

instants 0{ }k kt 

=  with  0 0t =  and lim k
x

t
→

→    along with a piecewise constant control term 

defined as 

1( ) ( ); [ , )k k ku t u t t t t +−                  (4)  

The control term so framed subsequently undergoes a channel delay and so the system is 

actuated by ( )u t −  instead of ( )u t  resulting in system detuning. To alleviate the bad effects of 

the channel delay, the predictor-based controller design has been proved to be a promising 

technique. In this methodology, the control policy framed by using the predicted values of the 

system states and the feedback system performs like a delay free system.  
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The following assumptions are taken for the controller design:  

Assumption 1: The nonlinear function ( ( ))f x t   satisfies the condition of linear growth. Over 

a compact set 
n

x R    the condition can be expressed as (Khalil & Grizzle, 2002): 

( ( )) ( ( )) ( ) ( )k kf x t f x t L x t x t−  −                (5) 

where 0L   is the Lipschitz constant. 

Assumption 2: The desired tracking trajectory ( )dy t R  and its derivatives are bounded and 

known ˆ ( ) { ( ), ( ), ( ), } .d d dy t y t y t y t L=    

Assumption 3: The system (1) does not exhibit finite escape time for [0, ]t    for any initial 

condition and bounded input. 

Assumption 4: The control input  { ( ) [ ,0]}u t t  −  is bounded and known. 

Assumption 5: There exists a predictor gain matrix m such that the matrix ( )A m−   is 

Hurwitz stable. Also, there exists an arbitrary positive definite matrix  such that a positive 

definite matrix  can be considered as the unique solution of the following equation: 

( ) ( )TA m P P A m Q− + − = −                 (6) 

Assumption 6: There exists a controller gain matrix K  such that the matrix ( )A BK−  is 

Hurwitz stable and under the condition of existence of the arbitrary positive definite matrix 1, 1Q P  

which is a positive definite matrix can be taken as the unique solution of the equation 

1 1( ) ( )TA BK P P A BK Q− + − = −                (7) 

Lemma 1. For any two matrices P  and Q , following inequality holds  

1T T T TP Q Q P P P Q Q


+  +                 (8) 

where 0   

3. Predictor Design and Analysis 

This section describes the development of the model-based predictors. The predictor states 

will be thereafter used for formulating the feedback law.    

3.1. Predictor Design  

In the context of the delay induced during the signal propagation from the controller to the 

actuator, a state predictor-based delay compensating strategy is formulated. A system model-based 

predictor for predicting the future values of the system states can be modelled as (Krstic, 2009): 

( )( )ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )px t Ax t B f x t u t me t= + + +                (9) 

where 1
ˆ ˆ ˆ[ , , ]T n

nx x x R=   are the predictor states. These states are the  instants ahead predicted 

estimates of the system states, ( )pe t  is the prediction error defined as  

ˆ( ) ( ) ( )pe t x t x t = − −                 (10) 

and m  is the gain matrix. 
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The term ( )pme t  is included to facilitate the rapid convergence of the prediction error to the 

close neighborhood of its origin.  

Under the condition of event triggering, (9) can be expressed as   

( )( )ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )px t Ax t B f x t u t me t= + + +     (11) 

where ˆ ( )pe t   is a piecewise constant term which undergoes updating at the event triggering instants 

0{ }k kt 

= . The term is defined as   

1
ˆ ˆ( ) ( ) ( ) ( ); [ , )p p k k k k ke t e t x t x t t t t += = − −                (12) 

The differentiation of (10) and the subsequent substitution of (2) and (9) results in the 

following dynamics: 

ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ( ( )) ( ( ))) ( ( ) ( ))p p p pe t x t x t A m e t B f x t f x t m e t e t  = − − = − + − − + − −         (13) 

To ensure the accurate prediction of the system states it is necessary that the prediction error 

dynamics (13) should converge to a residual set containing the origin. The convergence analysis of 

the prediction error is presented in the next subsection.   

3.2. Convergence Analysis 

Consider the following Lyapunov-Krasovskii functional (Al Issa & Kar, 2022b) 

1
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

 
−

= +                (14)  

where ( )pe t  (10) is the prediction error, P is a positive definite symmetric matrix and ( )W   is a 

positive definite function which will be defined later.  

The differentiation of (14) yields the following expression  
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The substitution of dynamics (13) results in  
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Rearranging the equation and applying Lemma 1 and the conditions stated in assumptions 1-6: 
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Selecting the term ( )W t  as 

2

1
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the substitution of ( )W t in (17) results in 

2 2 2

1 1 2

1 2

1 1 1
ˆ ˆ( ) ( ) ( ) ( )

2

T T T T

p p p pV e t Q L I P P m P Pm e t e t m me t 
 

  
 − + + + + + +   

  
         (19) 

At the triggering instances state variables are on the verge of violating the triggering rules 

which are defined considering the limits of stability. Under this condition it is reasonable to assume 

that there exists a finite value  + such that, if the system undergoes legitimate triggering 

following the prescribed triggering rule, then following condition is valid  

ˆ ˆ( ) ( )T T

p pe t m me t                   (20) 

Then the inequality (19) results in   
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where min (.) and max (.)  are minimum and maximum eigenvalues of the matrices under 

consideration. Thus 1V is negative outside a compact set defined 

2
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  (22) 

With an appropriate selection of parameters, the set can be reduced to an arbitrary small region. 

The next section describes the design of the event triggered control policy using the observer 

state estimates and analysis of the closed loop system performance. 

4. Event trigered control policy 

This section describes the development of the event triggered control policy using the 

predicted values of the state variables. 
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4.1. Event triggered control scheme  

For the prediction model (9) and the predicted state variables  1
ˆ ˆ ˆ

T

nx x x= with the 

desired trajectory ( )dy t  satisfying assumption 2, the tracking error vector can be defined as 

 1

T

d d d ne e e=                 (23) 

Where       

1 1

1

ˆ

ˆ

d d

n

d n n d

e x y

e x y
−

= −

= −

 

The differentiation of the error vector (23) results in the following expression   

 ˆ ˆ( ) ( ) ( ( )) ( ) ( ) ( )
n

d d pde t Ae t B f x t u t y t me t= + + − +             (24) 

For the predictor dynamics (24), a nominal version of the control term can be defined as 

ˆ( ) ( ) ( ( )) ( )
n

d du t Ke t f x t y t= − − +               (25) 

where 1 2 1[ 1]nK k k k −=  is the gain vector with 0; 1,2, , 1ik i n= −  .  

The control term required to be designed here is an event trigger version of (25). As per the 

definition of the event triggering, the control term generated should be a piecewise constant signal 

which undergoes updates only at some discrete triggering instants 0{ }k kt 

=  controlled by some 

triggering rules. The event triggered control policy is therefore (3)  

1( ) ( ); [ , )k k ku t u t t t t +=                    (26) 

with ˆ( ) ( ) ( ( )) ( )
n

k d k k kdu t Ke t f x t y t= − − +    

For controlling the triggering instances, the following triggering rule is defined as 

1
ˆ ˆ ˆ ˆ( ( ) ( )) ( ( ) ( ))T

k kx t x t x t x t m− −                (27) 

where 1m is a positive constant reflecting the limit of the permissible deviations of the state 

variables from their values at previous triggering instant. The triggering takes place whenever the 

deviation exceeds the limit, and the stated condition gets violated thus a triggering instant can be 

defined as 

 1 1
ˆ ˆ ˆ ˆinf ;( ( ) ( )) ( ( ) ( ))T

k k k kt t t x t x t x t x t m+ =  − −             (28) 

The next subsection details the convergence analysis with the event-triggered control term.  

4.2. Convergence analysis  

This subsection analyzes the boundedness of the closed loop signals under the action of the 

event triggered control schemes (3), (24), (26) and (28).   

The substitution of the control term in (24) results in the following dynamics 

 ˆ ˆ ˆ( ) ( ) ( ) ( ( )) ( ( )) ( ) ( ) ( ) ( ) ( )
n n

d d k k d d k pd de t A BK e t B f x t f x t y t y t Ke t Ke t me t= − + − + − + − +     (29) 

For the analytic validation, consider a Lyapunov function of the form 
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Here 1p  is the positive definite symmetric matrix. Differentiating (30) along the system 

trajectories 
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Under the conditions stated in Lemma 1 and the assumptions 1-6, the subsequent 

mathematical developments are:   
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ˆ ˆ ˆ ˆ( ( ) ( )) ( ( ) ( ) ( ) ( ) )

T

d d k

n n
T

k k d d kd d F

e t Q P e t L x t x t

V

y t y t K K x t x t y t y t

    
 

 

 
− + + + + + + − 

 
=  

 + − + − + −
 
 

    (32) 

where .
F

is the Frobenius norm of the matrix under consideration. Triggering condition (27) and 

boundedness of desired trajectory allows the following development  

 

2 2

2 1 1 2 3 4 1 1

1 2 3

2 2

min 1 1 2 3 4 max 1

1

2

1

2 3

1 1 1 1
( ) ( ( ) ) ( ) ( )

2

1
( ) ( ( ) ( ) ( ))

1

1 22
( )

T T

d d F

d

T

F

V e t Q P e t L K K m

e t Q P

L K K m

     
  

      



 

 
= − + + + + + + + + 

 

 
− + + + + + + 

 
  

 + +
  

       (33) 

Where positive constant  is defined as  

2
2

4 3

1 2
ˆ ˆ( ( ) ( )) ( ) ( )

n n
T

k d d kd d F
y t y t K K y t y t 

 
− + −               (34) 
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  The equation (33) allows to define the following convergence set 

2

1

1 2 3

2

min 1 1 2 3 4 max 1

1 1 2
( )

1
( ) ( )

2 ( ) ( ) ( )d

T

F

e d d

L K K m

e t e t
Q P

 
  

     

 
+ + + 

 
 =  

− + + + 
  

          (35) 

Therefore, the term 2V is negative when ( )de t  is outside the residual set parameters. By 

properly selecting the value of the parameters 1 2 3 4, , ,     , the size of the set 
de can be made 

arbitrarily small.  Lower values of these parameters are advised as they will reduce the denominator 

term which has a profound effect. 

From (33)   min 1
1 2 3 4 2

max 1

( )
( )

( )

Q

P


   


+ + +   

and by using it following the design inequalities, optimal values of the parameters can be obtained, 

2

1 3 4

max ( ( ) ( ))
1 1

0 ;0 ;0
2 2 10

n n

kd d
y t y t

  

−

       

Thus, for the networked dynamical system (2) with a predictor model (9) and control policy 

(26), the prediction and tracking error converges to the residual sets (22) and (35) and all the closed 

loop signals are uniformly ultimately bounded.       

The next section examines the compatibility of the event-triggering scheme under the 

constraints imposed by issues like Zeno Behavior. 

4.3 Admissibility of Control Law 

Zeno behavior refers to a situation in which the duration between two consecutive triggering 

instants approaches zero and the system undergoes infinite triggering instances within a finite 

duration. This situation results in excessive triggering of the switching mechanism, computational 

and communication overhead thereby degrading the system performance and reducing the 

efficiency of the system. To preclude Zeno behavior, it is required to ensure the existence of a 

finite inter execution time (Tabuada, 2007).  

Defining an error term of the form   

1
ˆ ˆ( ) ( ) ; [ , )k k kE x t x t t t t += −                 (36) 

Differentiating (36) and substituting (11) and (26) results in  

( )( )

( )

ˆ ˆ( ) ( ) ˆˆ ˆ( )( ) ( )

ˆ ˆ ˆ( ) ( ) ( ) ( )

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ( )) ( ) ( )

k k

p

n

d k k k pd

d x t x t dx tdE dx t dx t

dt dt dt dt dt

Ax t B f x t u t me t

Ax t B f x t Ke t f x t y t me t

−
=  − 

 + + +

 
 + − − + + 

 

           (37) 
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( )( )ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ( ))

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )

n

d k k p kd

n

d k k p kd

Ax t B Ke t y t me t f x t f x t

Ax t B Ke t y t me t L x t x t

 
 + + + + − 

 

 
 + + + + − 

 

  

 As all the closed loop signals are bounded, it is justified to assume that there exists a 

positive constant   such that  

ˆ ˆ( ) ( ) ( ) ( )
n

d k k pdAx t B Ke t y t me t
 

+ + +   
 

             (38) 

With (38), (37) it can be expressed as 

dE
LE

dt
 +                  (39) 

The solution of (39) can be expressed as  

( )
( )

1
( ) log 1 ( )

kL t t

k e

E t e
L L

L
t t E t

L

− 
 −

 
−  + 

 

               (40) 

 Substituting the boundary condition 
1/2

1 1: ( )kt t E t m+→ →  in (40) 

1/2

1 1

1
( ) log 1k k e

L
t t m

L
+

 
−  + 

 
               (41) 

Now as 
1/2

1

1
log 1 0e

L
m

L

 
+  
 

   

it means 1( ) 0k kt t+ −                              (42) 

The equation (41) indicates the existence of a finite lower bound on interexecution time.  

Thus, Zeno behavior is successfully avoided.  

The next section illustrates the simulation study carried out to validate the effectiveness of 

the control scheme.  

5. Simulation 

The following system dynamics is considered to conduct the simulation:   

( ) ( )

( ) ( )

1 2

2

1

( ) ( )

( ) ( ) : 0

x t x t

x t f x t u t t

y t x t



=

= + −  

=

              (43) 

where ( ) 2 2

1 2 1 2( ) 0.7sin( ( ) ( )) 0.25 ( ) ( )f x t x t x t x t x t= +   and    represents the channel induced 

delay. The system (43) belongs to the class of strict feedback systems (1) and satisfies all the stated 

assumptions. The following system conditions are taken for the simulation:  

Initial condition: (0) [0.3,0]Tx =  

Channel induced delay: 3sec =   
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System (43) is further expressed as:  

( )

( ) ( ) ( )x t Ax t B f u

y t Cx

= + +

=
                (44) 

where   
0 1 0

; ; 1 0
0 0 1

A B C
   

= = =   
   

 

To compensate for the network induced delay, a predictor (9) of the following form is 

formulated as  

( )( )ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )px t Ax t B f x t u t me t= + + +                                                           (45) 

The predictor gain matrix is selected as:  
10.3 0

0 2.61

T

m
 

=  
 

 

The following event triggered state feedback law is formulated by using the predicted states 

ˆ( ) ( ); ( ) ( ) ( ( )) ( )
n

k k d k k kdu t u t u t Ke t f x t y t= = − − +                                    (46) 

The controller term is formulated with the following parameter settings: 

Gain settings:  10.67,1
T

K = ;desired tracking trajectory: ( ) sin( )dy t t= ; event triggering 

threshold:  1 0.75m = .  

The results of the simulations conducted are shown in Figures 1,2, and 3. As revealed from 

the figures, the system states are bounded and closely track the desired trajectories; this reflects the 

effectiveness of the predictor model and predictor-based control term to alleviate the effects of the 

delay.  The predictor states are in agreement with the system states and the prediction error 

converges to a residual set including the origin. The event-control term formulated is free from 

Zeno behavior with the minimum and maximum value of the inter-execution time equal to 0.2 sec 

and 2.3 sec respectively. On average there are 10 triggering instants over a span of 5 sec. These 

attributes seem feasible from a pragmatic point of view and reflect the effectiveness of the 

proposed scheme in terms of control on the network. 
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Figure 1. System states and corresponding desired trajectories: a. 1( )x t  and ( )dy t , b. 2 ( )x t and 

( )ddy t   (Source: Author's own research) 
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Figure 2. Predictor states: a. 1̂( )x t  , b. 2
ˆ ( )x t   (Source: Author's own research) 
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Figure 3. a. Control effort ( )u t ,  b. Prediction error ( )pe t  (Source: Author's own research) 

5. Conclusion 

This paper addresses the issue of designing a predictor-based event-triggered control policy 

for cyber physical systems operating under the conditions of network delay and limited network 

resources. A predictor-based control policy is formulated, and its effectiveness is analyzed under 

the conditions of arbitrary time delay.  Event triggering allows the effective sharing of the network 

resources and also reduces the computational efforts of the controller. Lyapunov-based validations 
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have been developed to testify the boundedness of closed loop signals and the Zeno free behavior 

of the control term. The results of the simulation illustrate the promising performance of a control 

scheme in the presence of the channel delay and limited resources. 
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