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Abstract: This work focuses on the application of the Proportional-Derivative (PD)-type Iterative Learning
Control (ILC) to the two-degree-of-freedom (2DOF) Pelican robot manipulator, particularly in the context of
cyclic tasks, aiming to address the persistent challenges of trajectory tracking and steady-state error. To
ensure that the system remains stable and that errors diminish over time, the control law is updated iteratively.
The simulations carried out on the Pelican robot clearly demonstrate the effectiveness and robustness of this
method. By taking past tracking errors into account, the control is gradually refined. This learning process
not only enhances trajectory tracking precision but also allows the system to adapt its behavior in response to
load changes and variations in operating conditions.
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1. Introduction

The control of robotic manipulators is currently one of the major concerns and preferred
research areas in the field of automation. Indeed, the majority of the tasks assigned to robots are
delicate and require very high precision under fast trajectories (Umar & Bakar,2014; Dehghani &
Khodadadi, 2016; Amieur et al., 2022).

Over the past thirty years, researchers have explored a wide range of control strategies to
improve the performance and reliability of the robotic manipulators. These efforts have led to the
development of several well-known techniques, including Proportional-Integral-Derivative (PID)
control (Cojuhari, 2011; Mohamad Yuden et al., 2017), computed torque control, which simplifies
nonlinear robot dynamics to achieve accurate trajectory tracking (Bouakrif & Zasadzinski, 2016),
as well as adaptive, variable structure, and fuzzy control approaches (Wei, 2018; Xu, Zhang &
Mohammadzadeh, 2023).

In industrial contexts, robots often perform the same operation repeatedly. This repetition
frequently results in similar tracking errors across cycles. Observing this behavior suggests that
control systems should not treat each cycle independently. Instead, they can use the errors from
previous iterations to improve their performance in the following ones. Control strategies based on
learning make this possible by updating the command signals over time, which leads to a gradual
reduction in tracking errors. This characterizes the Iterative Learning Control (ILC) (Bien & Xu,
1998; Bouakrif, Boukhetala & Boudjema, 2007; Shen & Wang, 2014).

The basic idea of the Iterative Learning Control was published in 1978 in Japan by
(Uchiyama, 1978). However, since this article was published in Japanese, the work has not gained
continuity. Prior to Uchiyama's work, Garden patented his results in 1971, which he had already
realized in 1967 in the United States, titled "Learning Control of Actuators in Control Systems".
This approach involves storing a control signal in the computer's memory and iteratively updating
the control signal using the error between the actual response and the desired response. It was only
in 1984, following the works of (Norouzi & Koch, 2020; Wang et al., 2022; Saidi & Touati, 2023),
that ILC was explicitly defined.

ILC can be classified into two categories: autonomous ILC (off-line) and connected ILC (on-
line). In the autonomous ILC, the control in the current iteration uses information from the previous
iteration, while in the connected ILC, it uses information from both the current and the previous
iterations simultaneously (Yu, Hou & Xu, 2018). Additionally, another type of ILC algorithm has
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been developed using a positive definite Lyapunov sequence that decreases with iterations through
an appropriate choice of control. Xu and Qu (1998) showed how the lIterative Learning Control
(ILC) can be combined with a variable structure control using a Lyapunov-based approach. Their
work extended to a wide variety of nonlinear systems. By applying the Lyapunov theory, they
developed an ILC law integrated with robust control to address trajectory tracking in robotic
manipulators. This method was later expanded to cover many other types of nonlinear systems.
Building on this foundation and the previous control strategies, the present endeavour aims to
develop an ILC-based control system that is both straightforward and effective. A PD controller
because it is simple to implement, especially in industrial environments. The goal is to find a
control method that works well but remains easy to use in real industrial settings.

The remainder of this paper is organized as follows. Section 2 introduces the Iterative
Learning Control (ILC) framework and the PD-type ILC approach, which combines the fast
response of a PD controller with the ability to learn from past errors. Section 3 presents the
dynamic modeling of the Pelican robot manipulator. Section 4 discusses the simulation results,
emphasizing the method’s accuracy, consistency, adaptability to load variations, and robustness.
Finally, Section 5 concludes the paper and outlines directions for future research.

2. Iterative learning control

In automation, a repetitive system refers to any setup that performs the same task repeatedly
over a defined period, such as robotic manipulators, satellites, or industrial equipment. When
designing controllers for these systems, the goal is to make sure they react well and don’t keep
making the same mistakes. Achieving a consistent trajectory accuracy can be challenging, since
repeated reference inputs can cause the system to replicate errors from the previous cycles.
Typically, the control system does not account for errors from the previous cycles, highlighting the
importance of using all collected information to adjust the control for the next cycle, thereby
optimizing the reference trajectory tracking (Meng & He, 2020; Liu et al., 2022; Wang et al., 2022).
This need has led to the development of the Iterative Learning Control, an adaptive method that
refines the control at each iteration to reduce the discrepancy between the desired trajectory and the
system output from one iteration to the next (Bristow, Tharayil & Alleyne, 2006), as illustrated in
Figure 1:
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Figure 1. Standard ILC schematic diagram (Norouzi & Koch, 2020)

ILC fits within the broader framework of the closed-loop control, aiming to progressively
improve the trajectory tracking accuracy. Unlike the traditional approaches that adjust the
controller based on the system model, ILC iteratively utilizes historical data to optimize the
trajectory tracking performance over time.

In this study, a Proportional-Derivative (PD) controller is employed instead of a
Proportional-Integral-Derivative (PID) controller, as it provides a rapid response crucial for a
precise trajectory tracking in repetitive robotic tasks while maintaining the system stability. The
integral term of a PID, typically used to eliminate steady-state errors, is unnecessary here because
the iterative learning process in PD-type ILC already corrects persistent errors across iterations.
Moreover, using a PID increases the computational time since three parameters must be tuned and
processed instead of two, which complicates the real-time implementation. Including the integral
action could also introduce overshoot or oscillations, particularly in high-speed or sensitive
applications such as the Pelican robot. By combining the PD control with the iterative learning, the
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system achieves high accuracy and robustness without the additional computational burden of the
PID tuning. This approach ensures an efficient, easy to implement control system suitable for
industrial applications, while meeting the study’s precision and stability requirements (Ouyang &
Pipatpaibul, 2010; Riaz et al., 2023).

2.1. PD-Type Iterative Learning Control

Proportional-Derivative (PD) control proves especially effective for the robotic systems that
need quick responses, although it does not ensure zero steady-state error (Chong et al., 2017).
When following a path or managing their position, robots need to be able to react quickly. A PD
controller uses two parts, one that reacts to the current error and one that reacts to how fast the error
changes. This makes the robot respond quicker than if it only used one part. When you add
Iterative Learning Control to the PD controller, the robot learns from the previous tries and adjusts
its control little by little. Over time, this helps the robot do a better job and keep things steady. This
enhanced control strategy is expressed by the following equations:

Ugs1 ®= Uy O+ kp € ®+ kd ék (t) (1)

where: g, (t), €(t), k, and k, are respectively the position tracking error vector, the velocity
tracking errors vector , the proportional controller matrix and the derivative controller matrix.

3. Dynamic modeling of the Pelican robot

Consider the Pelican robot, consisting of n degrees of freedom and n joints. Its motion is
described by the following dynamic equation (Bouakrif, Boukhetala & Boudjema, 2007):

M(a)d+C(q,4) +C(a) =7 )
where q(t), q(t) and ¢(t) e R" are the position, velocity, and acceleration vectors respectively,
M(q) e R™ denotes the inertia matrix, C(q,q) e R™" is the Coriolis and centrifugal effects
matrix, G(q) € R™ represents the gravitational effect vector and = € R™* is the vector of applied

torques and forces on the actuators. The vectors g, (t), g, (t)and g, (t) e R" represent the desired

positions, velocities, and accelerations respectively. The dynamic equation (2) possesses the
following properties (Bouakrif, Boukhetala & Boudjema, 2007):

Property 1: The matrix M (q) is symmetric, positive definite, and bounded:
0= Ay | SIM(0) [I< Ay ] ©)
where 4, and A, are positive constants

Property 2: The norm of the matrix C(q,q) is bounded as follows:

1C(a, ) i<l A@) 4)
where S is a positive constant

Property 3: The norm of the vector G(q) is bounded as follows:

1G(a)lI<y ()
where y is a positive constant

To apply the control method, the authors introduce the experimental framework of the
Pelican robot (Kelly, Santibanez Davila & Loria, 2005):
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Figure 2. Schematic representation of the Pelican prototype (Kelly, Santibanez Davila & Loria, 2005)
and the

respective masses m, and m,. The robot's motion occurs in the (x—y) plane, as illustrated in

Figure 2. The distances from the rotation axes to the centers of mass are denoted |, and I, for
segments 1 and 2, respectively. The moments of inertia of the segments about the axes passing
through their respective centers of mass and parallel to the x-axis are designated as |, and I, .

Table 1 presents the detailed parameters of the Pelican robot (Kelly, Santibafiez Dévila & Loria,
2005):

The Pelican prototype consists of two rigid segments with lengths I, and 1, ,

Table 1. Pelican Prototype parameters

Parameter Designation Value Unit
Mass of Link 1 m 6.5225 kg
Mass of Link 2 m; 2.0458 kg
Length of Link 1 l1 0.26 m
Length of Link 2 I, 0.26 m
Gravity g 9.81 m/s?
Distance to Center of Mass 1 I 0.0983 m
Distance to Center of Mass 2 I 0.0229 m
Moment of Inertia at Center of Mass m; Iy 0.1213 kg/m?
Moment of Inertia at Center of Mass m, I, 0.1213 kg/m?

The dynamic model of the Pelican prototype can be calculated using the Lagrangian
formalism. It is represented by the following equation (Sciavicco & Siciliano, 2000):
d, oL, oL
n= ()

6
- odtUag” ag, ©

L =E, — E, is the Lagrangian function of the robot, E_ is the total kinetic energy, E is the

total potential energy, qe R is the vector of joint positions and e R is the vector of joint
velocities.

The geometric coordinates of link 1 are given by the following equation;

X, =l sin(q,)

Y, = _Icl COS(Ql) )

The velocity vector v, of the same link is given by:

(%) (1 cos(q,)d,
“‘[m]_(mSmmo%J ®

The corresponding kinetic energy for the first link is given by the formula (9):
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L1,
E.(0,4)= mVV+ 1,67 = 1|§1qf+§|32qf 9)

On the other hand, the geometric parameters of link 2, expressed in the (x — y) plane, are
given by the following equations:

Xy =l sin(qy) + lg, sin(gy +0y) (10)
Yy, =—h cos(qy) — 1., cos(qy +0y)

The velocity vector v, of the same link is given by:
- {x J (1 cos(ay)dy +1., cos(q, +a,)[d; + 6, ] )
© ) Lsinga)g, +1., sin(g, +0,)[d, +¢,]

The equation for the kinetic energy of joint 2 is as follows:

E..(a, q)— mV, v, + = I[q1+qz]

| 2 + 2 |§2 (67 + 26,0, +d5 |+ mybl, [ d +d,d, |cos(q,) + % 1, [q, +6,]° (12)
The total kinetic energy is described by the equation (13):
E.(9,d) =E.(a,d) + E;,(a,4)
- % (% + 1) + % myI2 [62 + 26,4, + G2 ]+ oL, [6 + .6, ]cos(a,) (13)

1 ., 1 .
+2 0+ 1[G+ 6, ]
Similarly, the total potential energy E is expressed by the formula (14):

E,(@=E,(a)+E,,(q) (14)

where E (q) and E_,(q) represent the potential energies associated with masses m, and m,
respectively, they are defined by the following two equations:

E,.(@)=m xgxh =-m xgxl, cos(q,) (15)
E,. (@)=m,xgxh,=m, xgx [_Il cos(q,) — 1, cos(q, + qZ)] (16)

=-m, x g x1, cos(q,) —m, x g xl, cos(q, +a,)
The Lagrangian, for the dynamic modeling of the robot, is described as follows:

L(a,d) = E.(a,6) - E, (q)
1 1 . . . . . .
:E(mllfl +myl7) a7 + = > myI2, (6f +26,d, + 3 )+ m,Ll, cos(a,)[ &7 + d,d, | (17)

1 . .
+(mllcl+mzl)gcos(q1)+nglczcos(q1+q2)+ 1,62 + —lz[q1+q2]2

From this final equation, we deduce the following expressions:

aL
ad,

http://lwww.rria.ici.ro

=[myl +m,l7 +myl2 +2m, L1, cos(a,) |dy +[ m,IZ, +m,Ll, cos(a,) ]d, + 1,6, +1,[d, +,]



36 Revista Roména de Informatica si Automatica, Vol. 35, nr. 3, 31-44, 2025

dt | og,
_2m2|1|c2 Sin(qz)(hqz - m2|1|c2 Sin(Qz)qzz + |1q1 + Iz [Ch + QZ]

i(iJ =[ M2 +m, 17 +m,I, +2m,Ll, cos(a,) ] +[ m,IZ, +m,Ll, cos(a,) |,

oL . .
a = _(mllcl + m2ll)g Sm(Ql) —-m, glcz Sln(ql + qz)
i
oL 2 . 2 . . . .
a = mzlczch + mzlcz% + mzlllcz Cos(qz)Q1 + |2 (ch + Q2)
2

d( oL .. " .. . .. L
a(aj = m2|c22Q1 + mzlczzqz +m,L 1, cos(q,)d, —m,l,l , sin(g,)q,d, + 1, (Q1 + %)
2

a = _mzlllcz Sln(qz)[qf + qlqz } - m2 gch Sin(ql + qZ)

2
The dynamic model is:
d oL d, oL ) _ oL

oL
=—(=)-—and 7, =— (=—
Tt g M T w G o,

= I:mllczl + m2|12 + m2|022 + 2m2|1|c2 COS(qZ) + |1 + |2:|q1 + [mzlczz + mzlllcz COS(%) + Iz J d,
_Zmzlllcz Sin(qz)qlqz - mZIlICZ Sin(qz)cb2 + [mllcl + m2ll]g Sin(ch) + nglcz Sin(ch + QZ)
7, =[ Mol + My, cos(a,) + 1, Jd, +[ I3, +1, ]d; +myLl, sin(a,)d; +m,gl, sin(q, +d,)

Given that 7, and 7z, are the torques provided to the actuators of joints 1 and 2,
respectively, the dynamic model is expressed in matrix form as equation (18):

[Mn(q) My, (Q)Jq +[Cll(q’ Q) Cp(a, q)j - (gl(Q)] _, (18)
Mz (a) M, (a) Cau(a,9) Cy(9,9) g.(a)

M (a) C(a.9) 9(a)
My, () = rnllczl +m, [Ilz + Ir:22 +2L1, COS(Qz)} +1+ 1, ' M, (q) = m2|(:22 +myl 1, cos(q,) + 1,

le(q) = m2|022 + m2|1|c2 cos(qz) + |2v Mzz (q) = m2|c22 + Iz

Cu(.4)=-m, L, sin(a,)d, . Cp,(a,d4)=-m,Ll, sin(a,)[d, +0,] . Cp(a,G)=myll, sin(a,)d,
and C,(q,4)=0

9,(a) =(myly, +m,l)gsin(q,) +m,gl,, sin(q, +a,) and g,(q) =m,gl, sin(q, +a,)

4. Simulation results

To validate the robustness of this PD type ILC approach, two reference trajectories were
selected: a sinusoidal trajectory and a complex exponential sinusoidal trajectory. The simulations
for these two reference trajectories were conducted using the following parameters of the PD
controller:

200 O 300 O . L. . .
k = , Ky = , simulation time t = 10s, number of iterations k=20
P 0 200 0 300

15t scenario: Sinusoidal trajectory

The desired trajectories q,, and q,, are described by the following equation:
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g,y =Sin(3t) and q,, =cos(3t)

Figure 3 shows the temporal evolution of the desired trajectories:
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Figure 3. Desired positions to be followed by both joints (Own research)

The desired trajectories of velocities ¢ and ¢, are obtained by deriving the outputs
described by equation (19). These trajectories are given by equation (20):

G,y =3cos(3t) and g,, =-3sin(3t)

(20)

Figure 4 illustrates the temporal evolution of the desired velocities ¢,, and d,, .
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Figure 4. Desired velocities to be followed by both joints (Own research)

The position errors of joints 1 and 2 are respectively represented by e (t) =q,, (t) —q,(t) and
The corresponding velocity errors for these joints are given by
& (t) =Gy (1) — G, (t) and e, (t) =0y () — G, (1)

Figures 5 and 6 show that the robot controlled by the PD type ILC follows the desired

trajectories perfectly. This observation confirms the effectiveness and robustness of the proposed
control.

€ (t) =

q (rad)

q2d (t) - qZ (t) '

Figure 5. Position tracking for the first joint g, (Own research)
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q, a0
o

-0-6948768
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7.062866967
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Figure 6. Position tracking for the second jointg, (Own research)

Figures 7 and 8 depict the temporal evolution of the velocities ¢, and d,, shown in solid

blue lines, with their references indicated by dashed red lines. The robustness of PD-type ILC in
trajectory tracking is demonstrated by the robot's actual velocities that perfectly converge towards
their references.

-2.67676406
-2.67676408

q‘1 (rad/s)

Time (s)

Figure 7. Velocity tracking for the first joint ¢, (Own research)

g (rad/s)
o

N

4188862
-1.3188864
03
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o 1 2 3 4 5 6 7 8 9 10
Time (s)

Figure 8. Velocity tracking for the second joint g, (Own research)

Figure 9 depicts the temporal evolution of trajectory tracking errors in terms of position. The
position error e, of joint g, converges to 10°°. This error practically converges to zero. The position
error e, of joint g, oscillates between 8.10° and —5.10°, with a tendency to converge towards
zero. These results demonstrate the high precision of the robot in its movementsin ¢, and g, .
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e, (rad), g, (rad)

Figure 9. Position errors for both joints (e; and ez) (Own research)
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Figure 10 illustrates that the velocity errors (e, and e,) for ¢, and ¢, are very small. Their

numerical values are on the order of 107°; we consider that these errors converge towards zero.
The Pelican robot follows these reference trajectories with high precision.

& (rad/s)‘ell (radls)

Figure 10. Velocity errors for both joints (e; and es) (Own research)
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2" Scenario: Exponential-Sinusoidal Trajectory

In this section, we take a closer look at how robust the PD-type lterative Learning Control is
when it comes to tracking complex trajectories. In particular, we examine how well the system
holds up when dealing with disturbances and uncertainties in its environment. We also assess how
the PD-type ILC improves tracking accuracy over multiple iterations. This analysis is important to
ensure that the robot can handle sophisticated tasks with reliability and precision, even under
changing or unexpected conditions. To test this, we use an exponential-sinusoidal reference
trajectory for position tracking. It is defined by the following equation:

Oy =h, [1 _g20¢ } +C, [1 _g20¢ }sin at, 0,y =b, [1— g 20t } +¢, [1— g 20t }sin ot (21)

where b, =% [rad], c, =% [rad] and @, =4 [rad/s] are the parameters for the desired position

reference of the first link, and b, =% [rad], c, =% [rad] and @, =3[rad/s] correspond to the
parameters for the desired position reference of the second link.

Figure 11 shows the profiles of the desired position trajectories g,, and q,, .
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Time (s)

10

Figure 11. Desired positions to be tracked by the two joints (Own research)

By utilizing the expressions for the desired position trajectories provided in equation (21),
we can derive the analytical formulas for the reference velocity trajectories, as determined by the
following equation:

G, =6ht2e ™ +6ct2e? sin(mt) + [cl —ce? }cos(a)lt)co1

G4 =6b,t2e " +6c,t%e " sin(w,t) + [cz —ce?® }cos(a)zt)a)2

(22)

Figure 12 shows the temporal evolution of the desired velocities ¢,, and d,, .
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Figure 12. Desired velocities to be followed by both joints (Own research)

Figure 13 shows the temporal evolution of the joint g, relative to its reference, represented
by a red dashed line. We observe that g, closely follows its reference, highlighting the
effectiveness of the PD-type ILC.

0.5

A1g
a1

0.66094045,

0.6609404 .
6.19204347

Time (s)

Figure 13. Position tracking for the first joint g, (Own research)

Figure 14 presents the temporal evolution of the joint g, relative to its reference q,, ,
depicted by a red dashed line. After 6.44 seconds, it is clear that g, tracks its reference. The
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complexity of the trajectory causes the transient response to be slow, showing the robustness of the
PD-type ILC method used with the Pelican robot.

q, ()

Time (s)

Figure 14. Position tracking for the second joint g, (Own research)

Figure 15 shows excellent velocity trajectory tracking with very high precision with
reference. This demonstrates how well the Pelican robot's control system works.

3

0.02304756
2 0.02304754
0.02304752

5.10096122757

a, (rad/s)

Time (s)

Figure 15. Velocity tracking for the first joint ¢, (Own research)

In Figure 16, the output g, is depicted alongside its reference d,,. A slight phase lag
between g, and d,, is observed after 4.5 seconds, with a very low but acceptable steady-state error.
From this point onward, ¢, closely tracks its reference with high precision, demonstrating the
Pelican robot's ability to achieve virtually zero steady-state velocity error.

q'2 (rad/s)

Time (s)

Figure 16. Velocity tracking for the second joint ¢, (Own research)

In Figure 17, the trajectory tracking errors in terms of position (e, and e, ) are depicted. The
position error e of joint g, quickly converges to zero, highlighting the precision of the Pelican
robot in trajectory tracking. As for the position error e, of joint g, , it only converges to zero after
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6.44 seconds. This observation is due to the fact that, as shown in figure 14, the output follows its
reference perfectly only after 6.44 seconds, with zero steady-state error.

0.2

e, (rad), e, (rad)

Time (s)

Figure 17. Position errors for both joints (e1 and ez) (Own research)
Figure 18 displays the trajectory tracking errors in terms of velocity (e, and e,) for both
joints @, and q,. The error e, converges to zero, while the velocity error e, , representing the error
for joint g, , converges to zero only after 5.5 seconds.

1.5
—— —-e3

e4

e, (rad/s),e4 (rad/s)

Time (s)

Figure 18. Velocity errors for both joints (e; and es) (Own research)

5. Conclusions

In conclusion, the trajectory tracking problem for the Pelican robot has been effectively
resolved through the application of the Iterative Learning Control combined with the proportional-
derivative control (PD-type ILC). The findings show that the system tracks both joint positions and
velocities with impressive accuracy. For joints 1 and 2, the errors were very small, reflecting near-
perfect alignment with the desired trajectories. This performance is mainly due to Proportional-
Derivative (PD)-type Iterative Learning Control (ILC), which adjusts the control input over time by
learning from previous attempts, gradually reducing errors and improving precision. Further, the
controller's proportional-derivative component allows the system to stay stable and fast by offering
prompt corrections when deviations arise.These findings demonstrate the resilience and
dependability of the PD-type ILC, even in intricate or dynamic settings. It enables the Pelican robot
to adapt in real time to uncertainties or disturbances without sacrificing its trajectory tracking
accuracy.
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This achievement suggests that the technique could be used for other robots that require
steady, accurate control. To summarize, the study demonstrates that the PD-type ILC is a robust
and dependable method for resolving intricate trajectory tracking issues and has a lot of potential
for application in numerous robotic systems in the future.
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