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Abstract: Early and accurate diagnosis of Alzheimer's disease (AD) stages, including Early and Late Mild 

Cognitive Impairment (EMCI, LMCI), is crucial for intervention. This study leverages Diffusion Tensor 

Imaging (DTI) metrics from 57 brain regions to classify AD progression and differentiate from healthy 

controls (HC). The proposed method, which incorporates various machine learning models, Bayesian 

hyperparameter optimization, 10-fold cross-validation, and cost-sensitive learning, achieved a high test 

accuracy of 90.4%. Feature ranking consistently identified Axial Diffusivity in the left uncinate fasciculus as 

a key biomarker, alongside important contributions from the sagittal stratum and hippocampal cingulum. Our 

findings demonstrate the significant potential of the DTI-derived features combined with optimized machine 

learning for enhancing multi-stage AD diagnosis and understanding the underlying neuropathological 

mechanisms. 
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1. Introduction 

Diffusion Tensor Imaging (DTI), Diffusion-Weighted Imaging (DWI), and Magnetic 

Resonance Imaging (MRI) are interconnected imaging modalities that collectively contribute to 

understanding brain structure and function. MRI serves as the foundational imaging technique, 

producing high-resolution anatomical images of the brain using strong magnetic fields and radio 

waves. Building upon MRI, DWI measures the diffusion of water molecules within tissues, 

capturing the random Brownian motion of water (Basser, Mattiello, & LeBihan, 1994). DTI 

extends DWI by modeling the directional movement of water molecules, enabling the assessment 

of anisotropic diffusion in the white matter tracts. Through the tensor model, DTI provides 

additional metrics, such as fractional anisotropy (FA) and mean diffusivity (MD), which reflect the 

orientation and integrity of the white matter fibers. Thus, while DWI and MRI provide general and 

diffusion-sensitive imaging, DTI focuses on the directional and structural properties of the white 

matter, making it a crucial tool for studying brain connectivity and microstructural changes in 

various neurological conditions (Le Bihan et al., 2001). 

Alzheimer's Disease (AD) is a progressive neurodegenerative disorder characterized by 

cognitive decline, memory loss, and behavioral changes, ultimately impairing daily functioning 

(Jack et al., 2010). It is widely recognized as the most common cause of dementia, and its 

progression occurs across distinct clinical stages. Early Mild Cognitive Impairment (EMCI) and 

Late Mild Cognitive Impairment (LMCI) represent transitional phases between healthy aging and 

the onset of Alzheimer’s dementia (Petersen et al., 1999). EMCI is an initial stage characterized by 

subtle memory impairments and minimal interference with daily life, often serving as a precursor 

to a more pronounced cognitive decline. LMCI is a more advanced stage of impairment, where 

individuals experience noticeable deficits in memory, language, or executive function, though their 

ability to perform daily activities remains relatively preserved (Albert et al., 2011). Differentiating 

these stages from health controls (HC) is crucial for the early diagnosis and intervention, as all 

therapeutic strategies are most effective during the preclinical and prodromal phases. Advanced 

imaging modalities, such as MRI and DTI, along with the machine learning techniques, offer 

promising avenues for identifying the subtle brain changes associated with these stages. The 

distinctions are essential for tracking the disease progression, the understanding underlying the 

pathophysiology, and tailoring interventions to the specific stages of AD (Sperling et al., 2011). 
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DTI provides valuable quantitative metrics that reflect the microstructural integrity of the 

white matter, which are instrumental in studying the neurodegenerative diseases such as AD 

(Chandra, Dervenoulas, & Politis, 2019). Among these metrics, FA measures the degree of the 

directional water diffusion, serving as an indicator of the white matter coherence and fiber integrity. 

MD quantifies the overall magnitude of water diffusion, offering insights into the density and 

structural organization of the brain tissue. Axial Diffusivity (AxD) reflects water diffusion along 

the principal axis of the white matter tracts, often associated with the axonal integrity, while Radial 

Diffusivity (RD) measures the diffusion perpendicular to the primary axis, linked to the myelin 

integrity. By capturing the stage-specific microstructural abnormalities, these metrics enable the 

differentiation of the healthy controls from the individuals at various stages of disease progression. 

Combining these biomarkers by advanced computational techniques, such as machine learning, can 

enhance the diagnostic accuracy and provide a deeper understanding of the underlying 

pathophysiological changes in AD. This study aims to leverage FA, MD, AxD, and RD derived 

from DTI data to identify and classify the stages of EMCI, LMCI, and AD, providing a non-

invasive and sensitive approach for an early detection and monitoring of the disease. 

To achieve an accurate classification of the AD stages, including EMCI and LMCI, the 

advanced machine learning methods are essential for analyzing the complex neuroimaging data 

(Khazaee, Ebrahimzadeh, & Babajani-Feremi, 2015; Khazaee, Ebrahimzadeh, & Babajani-Feremi, 

2017; Hojjati et al., 2018). This study employs a diverse set of classification algorithms, including 

decision trees, discriminant analysis, logistic regression classification, Naïve bayes classifiers, 

support vector machines (SVM), efficiently trained linear classifiers, nearest neighbor classifiers, 

kernel approximation classifiers, and ensemble classifiers. Each algorithm offers unique advantages, 

such as interpretability (e.g., decision trees and logistic regression), adaptability to high-

dimensional data (e.g., SVM and ensemble classifiers), and computational efficiency (e.g., Naïve 

bayes and linear classifiers). By leveraging this comprehensive approach, the study aims to 

evaluate the performance of each classifier in distinguishing between HC and different stages of 

AD using the DTI-derived metrics such as FA, MD, AxD, and RD. The integration of the multiple 

classifiers ensures robustness and provides insights into the most effective techniques for 

identifying subtle patterns in neuroimaging data. The ensemble methods, in particular, combine the 

strengths of the individual classifiers, enhancing predictive accuracy and reliability. This 

methodological diversity underscores the study’s potential to contribute novel, evidence-based 

solutions for early and precise identification of the AD stages, ultimately supporting timely clinical 

interventions.  

In addition, the Bayesian optimization was used to find the optimum values of the different 

classification models, enhancing their predictive performance and ensuring the most accurate 

classification of the AD stages. This optimization process involved fine-tuning hyperparameters to 

strike a balance between the model complexity and generalizability. Cost-sensitive learning was 

used to overcome imbalanced data and to prevent misclassification of the minority classes. 

Different feature ranking methods such as Minimum Redundancy Maximum Relevance (MRMR), 

Chi-Square (Chi2), Analysis of Variance (ANOVA), and Kruskal-Wallis were employed to 

identify the most informative features and the regions of the brain most affected at different stages 

of the AD. These methods provided complementary insights, with MRMR focusing on mutual 

information, Chi2 emphasizing statistical independence, ANOVA examining variance among 

groups, and Kruskal-Wallis assessing the non-parametric differences. By integrating these diverse 

techniques, the study aimed to pinpoint the key biomarkers and neural pathways involved in the 

progression from HC to EMCI, LMCI, and AD. This multifaceted approach not only improved 

classification accuracy but also advanced the understanding of the underlying neuropathological 

mechanisms, thereby contributing to the development of the targeted interventions and 

personalized treatment strategies. 

The remainder of this paper is organized as follows: Section 2 describes the dataset, imaging 

protocols, DTI metrics, classification techniques, and the cost-sensitive learning strategy applied to 

address class imbalance. Section 3 presents the experimental results, including model performance, 

feature ranking, and test evaluation. Section 4 provides a detailed discussion of the findings. 

Finally, Section 5 concludes the paper and outlines future research directions. 
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2. Methods 

2.1. Subjects 

The "USC - DTI ROI Summary Measures v1" dataset, derived from the ADNI (ADNIGO, 

ADNI2), provides preprocessed DTI metrics for analyzing the microstructural properties of the 

white matter tracts in the brain. This dataset is ideal for studying the neurodegenerative diseases, 

particularly Alzheimer’s disease, and related conditions. The subjects include those with normal 

cognition, EMCI, LMCI, and AD, facilitating the exploration of the white matter changes across 

the spectrum of the cognitive decline. The rigorous preprocessing and atlas-based regions of 

interest (ROIs) methodology ensure high-quality and consistent metrics suitable for group-level 

analyses (Nir et al., 2013). This dataset includes 976 records, however, the number of image data 

for two classes, namely mild cognitive impairment (MCI) and Significant Memory Concern (SMC), 

was too small to include them in the experiments. So, the resulting dataset contains 886 images 

divided into four classes: 164 images of AD patients, 165 of LMCI, 337 of EMCI, and 220 of HC. 

This dataset uses 57 ROIs defined by the Johns Hopkins University (JHU) DTI atlas (Mori et 

al., 2008). In addition to the 52 JHU labels, 5 more ROIs were evaluated: the bilateral fornix, 

bilateral genu, bilateral body and bilateral splenium of the corpus callosum, as well as the full 

corpus callosum, to get full summary measures of these regions. These ROIs encompass critical 

white matter tracts, including the corpus callosum (genu, body, splenium), corona radiata (anterior, 

superior, posterior), cingulum, uncinate fasciculus, thalamic radiations, and other major tracts. 

These tracts are widely recognized for their involvement in the cognitive processing and have been 

repeatedly associated with the AD pathology. For example, the microstructural degeneration in the 

uncinate fasciculus and cingulum bundle has been linked to the early episodic memory decline, 

while the damage to the corpus callosum and thalamic radiations has been observed in both MCI 

and AD stages. The selection of these ROIs thus allows a focused analysis of the white matter 

pathways most susceptible to the AD-related neurodegeneration. To ensure quality, artifacts in four 

ROIs were excluded when they fell outside the imaging field of view (Nir et al., 2013). 

2.2. Image acquisition and preprocessing 

The imaging data were acquired using 3.0 Tesla MRI scanners following standardized ADNI 

protocols. High-resolution DWI were collected using a dual-spin echo echo-planar imaging 

sequence with a b-value of 1,000 s/mm² across 41 non-collinear diffusion directions and 5 b0 

images. Slice thickness was set to 2.7 mm with an in-plane voxel size of 2.7 × 2.7 mm², resulting in 

a total scan time of approximately 9 minutes (Jack et al., 2008; Nir et al., 2013). 

Preprocessing involved rigorous quality assurance steps to ensure robust data analysis. 

Corrections for head motion and eddy current distortions were performed using FSL's eddy-correct 

tool (Jenkinson, Bannister, Brady, & Smith, 2002). The  non-brain tissue was removed from the 

diffusion-weighted images and T1-weighted anatomical scans using the Brain Extraction Tool 

(BET) (Smith, 2002) and ROBEX (Iglesias et al., 2011). A spatial normalization of T1-weighted 

images to the Colin27 brain template was performed using FSL's FLIRT with 6 degrees of freedom 

(Holmes et al., 1998). To correct for susceptibility-induced distortions at tissue-fluid interfaces, b0 

images were elastically aligned to their T1-weighted counterparts using mutual information-based 

registration (Leow et al., 2007). 

2.3. Diffusion tensor imaging measures and their importance 

The four key DTI measures—FA, MD, AxD, and RD—are calculated from the eigenvalues 

(λ1, λ2, λ3) of the diffusion tensor, which describe water diffusion along the three principal axes of 

the diffusion ellipsoid.  
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FA is a scalar value representing the degree of diffusion anisotropy and is calculated as: 
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Where 
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( ) / 3   = + +  is the mean diffusivity. FA ranges from 0 (isotropic diffusion) to 

1 (highly anisotropic diffusion), reflecting the coherence of the white matter fibers. FA is sensitive to 

the structural changes in the brain and is widely used in studying AD, where the lower FA values 

often correlate with a cognitive decline and disease progression (Stebbins & Murphy, 2009). 

MD is the average of the eigenvalues, providing a measure of overall water diffusion within 

a voxel: 
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This measure reflects the tissue density and integrity, with higher MD values indicating 

microstructural degradation. Increased MD values indicate neuronal loss, tissue degeneration, or 

extracellular matrix expansion, common in neurodegenerative diseases (Le Bihan et al., 2001). In 

Alzheimer’s disease, elevated MD values in the white matter regions suggest a progressive tissue 

breakdown and reduced microstructural complexity (Acosta-Cabronero et al., 2012). 

AxD represents diffusion along the principal axis of the diffusion ellipsoid, aligned with the 

primary direction of the white matter tracts, and is calculated as: 

1
AxD =              (3) 

Changes in the AxD values are often associated with an axonal damage or disruption of the 

core structure of the white matter fibers (Song et al., 2002). A decreased AxD is commonly observed 

in the conditions involving axonal injury, such as traumatic brain injury or advanced stages of the AD. 

While the AxD provides specific insights into the axonal health, its interpretation often requires a 

comparison with RD and FA to comprehensively understand the underlying pathology. 

RD is the average of the diffusion perpendicular to the principal axis and is calculated as: 
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The increased RD values are typically associated with the demyelination or compromised 

insulation of axons, as seen in the neurodegenerative diseases and conditions involving white 

matter disruption (Sun et al., 2006). In the Alzheimer’s disease, higher RD values in specific tracts 

have been linked to myelin loss and white matter degradation, contributing to cognitive 

impairments (Stebbins & Murphy, 2009). 

These four key scalar measures derived from DTI offer complementary information about 

the white matter structure and its alterations due to neurological and neurodegenerative conditions. 

Each of these measures provides a distinct perspective on the underlying biophysical properties of 

the white matter, making them essential tools for studying brain connectivity and pathology (Le 

Bihan et al., 2001; Mori & Zhang, 2006). 

2.4. Classification methods 

To classify the AD stages and differentiate them from the healthy controls, a comprehensive 

set of machine learning classifiers was employed. These classifiers were implemented using 

MATLAB’s Classification Learner App and custom scripts for optimized performance and 

interpretability. The classifiers were selected to explore a diverse range of algorithms, covering tree-

based models, discriminant analysis, logistic regression, Naïve Bayes classifiers, SVMs, nearest 

neighbor algorithms, kernel approximation methods, and ensemble learning techniques. Each 

approach offers unique advantages for handling the complexity of the high-dimensional DTI data. 

http://www.rria.ici.ro/
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Decision Trees, including Fine Tree, Medium Tree, and Coarse Tree models, provide a 

hierarchical structure for classification by recursively splitting the data based on feature thresholds. 

These models differ in the maximum number of splits, where Fine Trees allow numerous splits to 

capture fine-grained patterns, while Coarse Trees limit splits for simplicity and generalization. 

Linear Discriminant Analysis (LDA) was used to find linear boundaries that separate different 

diagnostic categories based on the DTI features. LDA is computationally efficient and effective for 

linearly separable datasets. Logistic Regression Classification, particularly Efficient Logistic 

Regression, estimates class probabilities using a logistic function, making it ideal for probabilistic 

classification tasks and robust to outliers when combined with regularization techniques      

(Hosmer Jr, Lemeshow & Sturdivant, 2013). Gaussian Naïve Bayes and Kernel Naïve Bayes 

classifiers assume feature independence and apply Bayes’ theorem for classification. These 

classifiers are computationally efficient and well-suited for datasets with limited inter-feature 

dependencies (Rish, Hellerstein & Thathachar, 2001). A variety of SVM models were explored, 

including Linear, Quadratic, Cubic, Fine Gaussian, Medium Gaussian, and Coarse Gaussian SVMs . 

Gaussian SVMs use radial basis functions (RBFs) to capture non-linear relationships in the data, 

with varying kernel widths (e.g., Fine, Medium, and Coarse) to control flexibility. SVMs are 

particularly effective for high-dimensional datasets with a clear margin of separation. The Nearest 

Neighbor (KNN) classifiers, including Fine KNN, Medium KNN, Coarse KNN, Cosine KNN, 

Cubic KNN, and Weighted KNN, predict class labels based on the proximity of the data points in 

the feature space. Kernel Approximation Classifiers, including SVM Kernel and Logistic 

Regression Kernel models, map the input data into higher-dimensional spaces using kernel 

functions to capture non-linear relationships. These approximations allow for efficient training and 

prediction while preserving the benefits of kernelized models (Rahimi & Recht, 2007). The 

ensemble learning methods, such as Boosted Trees, Bagged Trees, Subspace Discriminant, 

Subspace KNN, and RUSBoosted Trees, combine multiple base learners to improve classification 

accuracy. The subspace methods enhance diversity by training learners on random subsets of 

features, and the RUSBoosted Trees tackle imbalanced datasets by undersampling the majority 

class during training (Seiffert et al., 2010). 

2.5. Cost-Sensitive Learning for Addressing Class Imbalance 

To mitigate the challenges posed by an imbalanced dataset, where certain classes are 

significantly underrepresented, a cost-sensitive learning approach was adopted through the design 

of a custom cost matrix. The rationale behind this method is to explicitly penalize 

misclassifications of the minority classes more heavily than those of the majority classes, thereby 

guiding the learning algorithm to focus its optimization efforts on the less frequent, yet often 

critical, categories. Specifically, the entries in the cost matrix were derived from the inverse of each 

class's frequency within the training data, followed by normalization. This ensures that classes with 

fewer samples are assigned a proportionally higher misclassification cost, while correct 

classifications (represented by the diagonal elements of the matrix) incur no cost. By integrating 

these differential costs into the model's training process, the objective is to reduce the bias towards 

the majority classes and achieve a more balanced predictive performance across all categories, 

particularly enhancing the classification accuracy for the minority classes. 

3. Results 

The dataset consisted of 886 images categorized into four diagnostic groups: 164 images 

from AD patients, 165 from LMCI subjects, 337 from EMCI subjects, and 220 from HC. To ensure 

a strict separation between the training and testing phases, we reserved 20% of the data as a 

completely independent hold-out test set, which was not used in any way during the model training 

or validation. The remaining 80% of the data was used exclusively for the model development, 

where we applied 10-fold cross-validation to train and validate the classifiers. In this procedure, the 

training data were partitioned into ten subsets; in each fold, nine subsets were used for training and 

one subset for validation, cycling through all subsets to obtain robust estimates of the model 

performance and to minimize overfitting. This approach guarantees that the test set remains entirely 
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unseen during the entire training and hyperparameter tuning process. After the model was finalized 

based on cross-validation, it was evaluated on the independent 20% hold-out test set, providing an 

unbiased and rigorous estimate of its accuracy on unseen data. While an external validation on a 

separate dataset would further strengthen the findings, the use of a strictly held-out test set offers a 

reliable assessment of the model generalizability, mitigating concerns of overfitting and data 

leakage.  

The input features consisted of averaged values of FA, AxD, MD, and RD over 57 ROIs, 

resulting in 228 features used for training the machine learning models. Figure 1 illustrates the 

overall procedure of the proposed method. Table 1 presents the obtained results. Hyperparameters 

for all models were optimized using Bayesian optimization over 30 iterations, as shown in Table 1. 

This optimization significantly improved the accuracy in most models. The Bayesian optimization 

algorithm aims to minimize a scalar objective function f(x) within a bounded domain, whether 

deterministic or stochastic. It utilizes a Gaussian process model of the objective function f(x) and a 

Bayesian update procedure for modifying the model at each new evaluation. The acquisition 

function a(x) is then maximized to determine the next evaluation point x. This process begins by 

evaluating several random points within the variable bounds, then iteratively updating the Gaussian 

process model, and selecting new points based on the acquisition function. The algorithm stops 

after a fixed number of iterations (30 by default) or upon meeting other stopping criteria. This 

method effectively balances exploration and exploitation, leading to robust and well-performing 

models, ultimately enhancing the predictive accuracy (Bull, 2011; Snoek, Larochelle, & Adams, 

2012). Table 1 also describes the hyperparameters that should be optimized for each type of model 

and the search range of each hyperparameter.  

 

Figure 1. Overview of the proposed machine learning pipeline for Alzheimer’s disease classification  

using DTI-derived features 

Among the classification models in Table 1, the KNN achieved the highest overall accuracy 

in the four-class classification task, with validation and test accuracies of 92.5% and 90.4%, 

respectively. Figure 2 illustrates the Receiver Operating Characteristic (ROC) curve, Precision-

Recall curve, and confusion matrix for the KNN on the test set.  

Feature ranking methods—including MRMR, Chi-squared (Chi2), ANOVA, and Kruskal-

Wallis—were utilized to evaluate and prioritize the importance of the input features. Each method 

applies a distinct statistical approach, enabling a thorough and complementary assessment of the 

feature relevance (Hogg & Ledolter, 1987; Ding & Peng, 2005). Each algorithm employs a distinct 

strategy for assessing the feature importance, collectively enabling a more comprehensive analysis. 

MRMR focuses on selecting features that are maximally relevant yet minimally redundant. Chi2 is 

a statistical test used to determine if there is a significant association between the categorical varia-

bles. ANOVA compares the means of different groups to ascertain if any of them differ signify-

cantly. The Kruskal-Wallis test, on the other hand, is a non-parametric method used for comparing 

more than two samples that are independent, or not related. The top-ranked features are presented 

in Table 2, revealing a consistent pattern of importance across all four algorithms. Notably, 

AxD_UNC_L emerged as the most significant feature, consistently receiving the highest rank. 

http://www.rria.ici.ro/
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Table 1. Bayesian optimization for finding optimum values of hyperparameters of different models for 

classification of HC, EMCI, LMCI, and AD groups 
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Name Search range 
Optimized 

value 

Optimizable 

Tree 

Maximum 

number of 

splits 

1 - 708 106 

59.8 52.5 2100 131.6 66 

Split criterion 

Gini’s diversity 

index, Twoing 

rule, Maximum 

deviance 

reduction 

Twoing 

rule 

Optimizable 

Discriminant 

Discriminant 

type 

Linear, Quadratic, 

Diagonal Linear, 

Diagonal 

Quadratic 

Linear 62.1 64.4 1900 111.22 877 

Optimizable 

Naïve Bayes 

Distribution 

names 
Gaussian, Kernel Kernel 

42.7 42.4 61 2323.4 7000 Kernel type 

Gaussian, Box, 

Epanechnikov, 

Triangle 

Gaussian 

Standardize 

data 
true, false No 

Optimizable 

SVM 

Multiclass 

coding 

One-vs-All, One-

vs-One 

One-vs-

All 

88.3 87 1600 2006.3 2000 

Box constraint 

level 
0.001-1000 0.0010607 

Kernel scale 0.001 – 1000 - 

Kernel 

function 

Gaussian, Linear, 

Quadratic, Cubic 
Quadratic 

Standardize 

data 
true, false Yes 

Optimizable 

Efficient 

Linear 

Learner 
SVM, Logistic 

regression 
SVM 

47 40.7 1900 414.42 216 

Regularization Ridge, Lasso Ridge 

Regularization 

strength 

(Lambda) 

1.4104e-08 – 

141.0437 
17.2405 

Multiclass 

coding 

One-vs-All, One-

vs-One 

One-vs-

All 

Optimizable 

KNN 

Number of 

neighbors 
1 – 355 1 

92.5 90.4 740 254.16 1000 
Distance 

metric 

City block, 

Chebyshev, 

Correlation, 

Cosine, 

Euclidean, 

Hamming, 

Jaccard, 

Mahalanobis, 

Minkowski 

(cubic), Spearman 

 

Cosine 
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Distance 

weight 

Equal, Inverse, 

Squared inverse 

Squared 

Inverse 

Standardize 

data 
true, false Yes 

Optimizable 

Kernel 

Learner 
SVM, Logistic 

regression 
SVM 

85.3 83.1 800 2164.7 463 

Number of 

expansion 

dimensions 

100 – 10000 231 

Regularization 

strength 

(Lambda) 

1.4104e-06 – 

1.4104 
1.2295 

Kernel scale 0.001 – 1000 0.0010638 

Multiclass 

coding 

One-vs-All, One-

vs-One 

One-vs-

All 

Standardize 

data 
true, false Yes 

Optimizable 

Ensemble 

Ensemble 

method 

Bag, AdaBoost, 

RUSBoost 
AdaBoost 

86.5 81.9 120 4391.5 29000 

Number of 

learners 
10 – 500 486 

Learning rate 0.001 – 1 0.93892 

Maximum 

number of 

splits 

1 – 708 77 

Number of 

predictors to 

sample 

1 – 228 - 

4. Discussions 

The results in Table 1 demonstrate the efficacy of using DTI metrics as features for 

classifying different stages of the AD. The Optimizable KNN model achieved the highest test 

accuracy (90.4%) among all models, highlighting its exceptional ability to classify the AD stages. 

This performance is attributed to the optimized hyperparameters, including the use of a Cosine 

distance metric, one neighbor, and squared inverse distance weighting, which likely enhanced the 

model's ability to discriminate between the subtle class differences. Similarly, the Optimizable 

SVM with a quadratic kernel function and One-vs-All multiclass coding achieved a high test 

accuracy of 87%. The kernel's non-linear decision boundaries effectively captured the complex 

relationships in the data, making it one of the top-performing models. In contrast, the Optimizable 

Naïve Bayes classifier, despite using a kernel distribution achieved a relatively low test accuracy 

(42.4%), indicating its limited suitability for this dataset. The use of the kernel-based probability 

estimation increased the computational complexity, as evidenced by the significant training time 

(2323.4 seconds) and the large model size (7,000 kB). 

The prediction speed varied significantly across models, reflecting the differences in the 

computational demands. The Optimizable Discriminant model exhibited the highest prediction 

speed (1,900 obs/sec), making it ideal for the real-time or large-scale applications. This can be 

attributed to its linear discriminant type, which simplifies the decision boundaries. In contrast, the 

Optimizable Ensemble model demonstrated the slowest prediction speed (120 obs/sec), reflecting 

the computational cost of its AdaBoost method, high number of learners (486), and large model 

size (29,000 kB). The training time was shortest for the models with fewer parameters and simpler 

structures. For instance, the Optimizable KNN model trained in just 254.16 seconds, benefiting 

from its reliance on a single neighbor and correlation distance metric. On the other hand, the 

Optimizable Kernel model had one of the longest training times (2,164.7 seconds), primarily due to 

its high dimensionality (231 expansion dimensions) and the computational expense of the SVM 

kernel calculations. The Optimizable Efficient Linear model demonstrated one of the smallest 

http://www.rria.ici.ro/
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model sizes (216 kB), making it suitable for the lightweight applications. In contrast, the 

Optimizable Ensemble model had a significantly larger size (29,000 kB), reflecting its complexity 

and reliance on multiple base learners. Similarly, the Optimizable Naïve Bayes model (7,000 kB) 

was also large, limiting its practicality for the resource-constrained deployments. 
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     (c) 

Figure 2. Different performance metrics of the KNN model in classification of HC, EMCI, LMCI, and AD 

groups: a) ROC curve, b) Precision-Recall curve, c) Confusion matrix 

 

The results highlight the trade-offs between accuracy, computational efficiency, and resource 

requirements; the Optimizable KNN provides an unparalleled accuracy but requires moderate 

computational resources, making it suitable for the high-stakes diagnostic tasks. The Optimizable 

SVM offers a balance of high accuracy and moderate prediction speed, excelling in the scenarios 

where accuracy is paramount but resources are less constrained. The Optimizable Discriminant is 

ideal for the real-time applications due to its high prediction speed and compact model size, despite 

its slightly lower accuracy compared to KNN and SVM. The Optimizable Ensemble achieves high 

accuracy but at the expense of slow predictions, long training times, and large model sizes, limiting 

its use to offline analysis or research applications. The findings emphasize the importance of 

aligning model selection with application requirements, balancing accuracy with computational 

efficiency and scalability.  
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Table 2. Top ten features with higher importance values in each feature ranking method.  

AxD_UNC_L:  AxD Uncinate fasciculus left, FA_PCR_L: FA Posterior corona radiata left, 

FA_SCP_R: FA Superior cerebellar peduncle right, AxD_FX_L: AxD Fornix left, FA_IFO_L: FA 

Inferior fronto-occipital fasciculus left, AxD_SS_L: AxD Sagittal stratum left, AxD_UNC_R: AxD 

Uncinate fasciculus right, FA_ALIC_R: FA Anterior limb of internal capsule right, AxD_CGH_L: 

AxD Cingulum (hippocampus) left, FA_FX_L: FA Fornix left, RD_SS_L: RD Sagittal stratum left, 

MD_UNC_L: MD Uncinate fasciculus left, MD_UNC_R: MD Uncinate fasciculus right, 

MD_SS_L: MD Sagittal stratum left, MD_CGH_L: MD Cingulum (hippocampus) left, 

RD_UNC_L: RD Uncinate fasciculus left, RD_CGH_L: RD Cingulum (hippocampus) left 

The ROC curves presented in Figure 2a demonstrate the KNN model's capacity for 

distinguishing between the diagnostic groups. Notably, the model achieved high AUC values for 

AD, EMCI, and LMCI, with AUCs of 0.9676, 0.9607, and 0.9642, respectively, indicating 

excellent discriminatory power for these classifications. In contrast, the classification of HC 

showed a slightly lower AUC of 0.8593, suggesting a relatively reduced capacity to differentiate 

this group from others. The operating points on the ROC curves further specify the sensitivity and 

specificity trade-off achieved by the model for each group. Overall, while the model exhibits strong 

performance across all groups, the nuanced differences in the AUC values suggest potential 

variations in the model's ability to precisely classify individuals within the spectrum of the 

cognitive decline. Similarly, the Precision-Recall curves (Figure 2b) illustrate a favorable balance 

between the model's ability to correctly identify the positive cases and avoid the false positives. 

The confusion matrix (Figure 2c) provides a detailed breakdown of the classification outcomes, 

highlighting the number of true positives, true negatives, false positives, and false negatives for 

each group. This allows for a granular understanding of the model's strengths and weaknesses in 

correctly assigning individuals to their respective diagnostic categories. 

A striking observation from Table 2 is the consistent prominence of the Axial Diffusivity 

(AxD) of the left Uncinate fasciculus (AxD_UNC_L), which appears as the top-ranked feature in 

all four methods. This high degree of consensus across diverse statistical approaches underscores 

its critical role. The uncinate fasciculus (UNC) is a major white matter tract connecting the anterior 

temporal lobe and the orbitofrontal cortex, playing a crucial role in various cognitive functions, 

including memory, emotion regulation, and language processing. The abnormalities in the UNC, as 

reflected by the changes in DTI metrics like AxD, have been implicated in several neurological and 

psychiatric conditions. The axial diffusivity (AxD) generally reflects the axonal integrity, and a 

decrease in the AxD can suggest the axonal damage or demyelination, while an increase might 

indicate an axonal swelling or early Wallerian degeneration (Acosta-Cabronero et al., 2012; 

MRMR Chi2 ANOVA Kruskal Wallis 

AxD_UNC_L AxD_UNC_L AxD_UNC_L AxD_UNC_L 

FA_PCR_L AxD_UNC_R RD_SS_L MD_SS_L 

FA_SCP_R RD_SS_L MD_SS_L RD_SS_L 

AxD_FX_L MD_UNC_L MD_UNC_L AxD_UNC_R 

FA_IFO_L MD_UNC_R AxD_SS_L MD_UNC_L 

AxD_SS_L MD_SS_L MD_CGH_L MD_CGH_L 

AxD_UNC_R MD_CGH_L RD_UNC_L AxD_CGH_L 

FA_ALIC_R AxD_SS_L AxD_CGH_L AxD_SS_L 

AxD_CGH_L RD_UNC_L RD_CGH_L RD_CGH_L 

FA_FX_L RD_CGH_L AxD_UNC_R MD_UNC_R 
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Salvadores, Gerónimo-Olvera, & Court, 2020). 

Beyond AxD_UNC_L, several other features demonstrate their high importance across 

multiple methods, suggesting their robust association with the underlying phenomenon being 

investigated. Both Radial Diffusivity (RD_SS_L) and Mean Diffusivity (MD_SS_L) of the left 

sagittal stratum are frequently identified. The sagittal stratum is a broad white matter sheet 

containing several major association and projection fibers, including the inferior fronto-occipital 

fasciculus and the inferior longitudinal fasciculus, which are vital for the visual processing, 

language, and executive functions. RD is often considered sensitive to demyelination, while MD is 

a general measure of water diffusion, reflecting the overall tissue integrity (Nir et al., 2013; Zhang 

et al., 2014). In addition to AxD_UNC_L, the right uncinate fasciculus (AxD_UNC_R, 

MD_UNC_R) and the left uncinate fasciculus (MD_UNC_L, RD_UNC_L) also appear, further 

emphasizing the bilateral importance of this tract. The left cingulum (hippocampus) (AxD_CGH_L, 

MD_CGH_L, RD_CGH_L) is another recurrent feature. The cingulum bundle, particularly its 

hippocampal portion, is integral to the limbic system, involved in memory, emotion, and executive 

control (Song et al., 2002; Dou et al., 2020). The left fornix (AxD_FX_L, FA_FX_L) is also 

present in some rankings. The fornix is a C-shaped bundle of nerve fibers in the brain that acts as 

the primary efferent pathway from the hippocampus, playing a critical role in memory formation 

and recall (Zhang et al., 2014). FA_ALIC_R and FA_PCR_L appear in some rankings. These 

structures contain projection fibers connecting the cerebral cortex to the subcortical structures and 

the brainstem, involved in the motor and sensory pathways. 

Recent research has increasingly applied DTI and machine learning for Alzheimer’s disease 

classification, though most studies focus on a binary classification or require multimodal imaging. 

For example, Ren et al. combined the DTI features with clinical scores such as MMSE and ADAS, 

achieving 97.8% accuracy in AD vs. HC classification (Ren et al., 2023). Similarly, Song et al. 

employed graph-based white matter networks from DTI to predict MCI-to-AD conversion with an 

AUC of 0.92 (Song et al., 2024). Pan et al. used a cross-modal transformer GAN to fuse DTI with 

the resting-state fMRI for their multiclass classification, yielding strong results but depending on 

complex multimodal data (Pan et al., 2024). Yang et al. adopted the white matter connectivity 

networks derived from DTI and used SVM-RBF to classify AD, MCI, and HC, achieving high 

accuracy but limited in handling class imbalance (Yang et al., 2023). Hechkel & Helati (2025) 

developed a deep learning model using fused DTI and T1-weighted MRI data, obtaining a robust 

binary classification performance, but without exploring the intermediate disease stages (Hechkel 

& Helali, 2025). In contrast, the present work addresses the more challenging four-class 

classification task (HC, EMCI, LMCI, AD) using only DTI-derived features across 57 ROIs. 

Additionally, a misclassification cost matrix was incorporated to mitigate the effects of class 

imbalance, particularly for the AD and LMCI classes. These results are comparable to or exceed 

the recent multimodal or binary studies, demonstrating that the carefully optimized DTI-based 

pipelines, paired with the cost-sensitive learning, can deliver an accurate and clinically relevant 

multi-stage AD classification. 

5. Conclusion 

This study successfully demonstrated the utility of the Diffusion Tensor Imaging (DTI) 

metrics, particularly the Axial Diffusivity (AxD) in the left uncinate fasciculus, as robust 

biomarkers for classifying various stages of Alzheimer's disease (AD), including the Early and Late 

Mild Cognitive Impairment (EMCI, LMCI), and differentiating them from the healthy controls. 

Through the application of the optimized machine learning techniques, notably the K-Nearest 

Neighbors (KNN) model which achieved a 90.4% accuracy, these findings underscore the 

significant potential of the DTI-derived features for enhancing the multi-stage AD diagnosis. This 

work contributes to a deeper understanding of the neuropathological mechanisms underlying the 

AD progression and offers a promising non-invasive approach for earlier and more precise   

clinical assessment.  
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