
Romanian Journal of Information Technology and Automatic Control, Vol. 30, No. 4, 73-84, 2020                                 73 

https://doi.org/10.33436/v30i4y202006   

Demythisation of interfaces in OOP 

Dragoş NICOLAU 

National Institute for Research and Development in Informatics – ICI Bucharest 

dragos.nicolau@ici.ro 

Abstract: The current material aims at introducing several considerations designed to clarify the topic of 

interfaces ˗ a remarkable software development tool, while at the same time a very challenging (burdensome) 

concept pertaining to Object Oriented Programming. Modern scientific literature includes a substantial 

number of written materials (tedious and purely descriptive in nature) dedicated exclusively to listing an  

inventory of the anatomical structure and functional tasks of interfaces, whereas only a negligible percentage 

of the currently available scientific works would dare to indicate correctly (though chaotically and 

inconsistently) the operating processes supported by interfaces. The contribution of the present paperwork is 

to identify and dismantle the most widely spread misconceptions about interfaces; to provide accurate and 

clear  descriptions of the key notions and fundamental mechanisms lying at the core of interfaces activity; to 

equip the reader with the necessary skills as well as with the full motivation needed to incorporate interfaces 

into the code-development strategies. 

Last but not least, even though this material primarily addresses software developers, we hope that it could 

also represent a beneficial eye-opener for all individuals willing to capture a good understanding of the    

seemingly “capricious and hard-to-read” persona of the saga of Object Oriented Programming. 

Keywords: Interface, misconceptions, benefit of using, drawbacks of not using, OOP. 

Demitizarea interfeţelor în Programarea Orientată Obiect 
Rezumat: Lucrarea de faţă are drept scop prezentarea unui ansamblu de consideraţii gîndite (destinate) să 

clarifice noţiunea de “interfaţă” – un instrument remarcabil în dezvoltarea software, care, însă, riscă să 

rămînă, în mod oneros şi nedrept, un concept greu inteligibil în cadrul Programării Orientate Obiect. 

Literatura științifică modernă oferă un număr substanțial de materiale scrise (greoaie și pur descriptive, 

dedicate exclusiv listării banale a unui inventar de elemente anatomice și de sarcini funcționale ale 

interfețelor), din care însă doar un procent neglijabil, pînă în prezent, se încumetă să indice corect (deși haotic, 

incomplet și inconsecvent) modul real în care sînt utile interfețele. Contribuția prezentului material este aceea 

de a identifica și de a face cunoscute cele mai răspândite concepții greșite despre interfețe; aceea de a oferi 

descrieri precise și clare pentru noțiunile cheie și pentru mecanismele fundamentale care stau la baza 

principiului de lucru al interfețelor; cea mai importantă, aceea de a oferi cititorilor (dezvoltatorilor) motivația 

deplină necesară utilizării interfețelor în strategiile de dezvoltare a codului. 

Nu în ultimul rând, chiar dacă acest material se adresează în principal dezvoltatorilor de software, sperăm să 

oferim un instrument de cunoaştere binevenit pentru oricine este interesat să înţeleagă acest personaj 

„capricios și greu de pătruns” din saga Programării Orientate Obiect. 

Cuvinte cheie: interfaţă, concepţii greşite, avantaje ale utilizării, dezavantaje ale neglijării, POO. 

1. Introduction 

Main essential notions of Object Oriented Programming (referred to as OOP from this point 

onward) are straightforward and intuitive: classes are data structures that group functions (called 

methods), encapsulation is a restriction against excessive spreading of data and functions throughout 

a project (i.e. confining data to their own class as much as possible) and inheritance is the opportunity 

of taking for granted a certain amount of pieces of functionality. 

It is our opinion that interfaces represent with certainty the single most bizarre and obscure 

concept of OOP. Despite the abundance of materials (and authors) that approach this topic, it still 

remains obvious the failure to provide the reader with the extremely needed rationales for the usage 

of interfaces. Consequently, instead of being regarded as useful tools for good programming practice, 

interfaces appear doomed to retain the ill-fated position of simply being basically “empty classes to be 

inherited”. Unfortunately, within the scientific community of software developers, the  vast  majority 



 Revista Română de Informatică și Automatică, Vol. 30, nr. 4, 73-84, 2020 

http://www.rria.ici.ro   

74 

of authors (of printed books, articles, academic lectures etc) appear to focus solely on describing the 

operating principles of interfaces (exemplifying the notion of interfaces inside code written in Java or 

C#), while lamentably failing to promote the actual benefits of the consistent employing of interfaces. 

1.1. Related works 

For instance, most scientific works share the following traits: 

(a) they merely present what interfaces are, while neither revealing the grounds behind 

building/using interfaces, nor any tangible advantages thereof [1]; 

(b) they elliptically and inappropriately present isolated, irrelevant cases in which interfaces 

seem to be of no utility; state that interfaces are useful for multiple inheritance; or present 

chaotically the role of interfaces [3]; 

(c) they present no rationale to employ interfaces: they simply assert how to implement 

interfaces, thus transforming the concept into nothing more than a theoretical, academic 

notion devoid of any practical utility [4]; 

(d) introduce interfaces as a new tool aiming to create a generic behavior rather than specific 

per class behavior; unfortunately, they lack clarity and neglect not only mentioning other 

(more) important/significant uses, but also asserting the functional identity of interfaces; 

they happen to insert erroneous and misleading scheme [6]; 

(e) they “advertise” interfaces as being a “peculiar, specific programming trick” in whose 

absence the detection of mouse or keyboard actions would become impossible ˗ 

incidentally a very poor and irrelevant paradigm, as mouse and keyboard actions are truly 

captured by a certain window procedure, not by interfaces (which in this case function as 

simple action filters, a technicality imposed by the specific Java code compiler.) [2]; 

(f) they are generally a tiny bit inconclusive, incomplete & confusing [7]. 

1.2. Contribution of the present paperwork 

These are a modest but extremely representative sample of a plethoric collection of papers 

exhibiting the protocol of using interfaces but practically never mentioning the reason, the raison 

d'être of resorting to this important programming feature. 

Every scholar emphasizes only the functional traits of interfaces either neglecting to underline 

their purpose or providing the audience with confusing and erroneous statements. Leaving 

unanswered the following questions wrongfully transforms the concept of interfaces yet into another 

abstruse academic complication: why consuming time with understanding them ? what is their 

finality ?, what is their strong point, if any ?, to serve what technical purpose were they even 

invented ?, in our opinion the crucial questions being what is the benefit of using interfaces ? and 

moreover so, what is the havoc of not using interfaces ? 

As everyone can intuit, practically all the “answers” to these questions are not the most 

illuminating choice, the vast majority of them underlining – among other more or less convincing / 

confusing arguments – that interfaces are: (a) a contract to be fulfilled by implementing some void 

methods, (b) a chance to enjoy multiple inheritance, (c) a mechanism for programming the detection 

of mouse / keyboard actions in a Desktop Application or (d) a board with sockets where one can plug 

different electrical appliances etc. 

The contribution of the present material is the striving to shad light on the most spread 

misconceptions, thus eliminating what we consider to be inaccuracies inside the general perspective 

on the concept, and the attempt to introduce the most important element in deciphering interfaces: 

incentive. Although this paperwork mainly addresses software developers, we think that it can be 

useful to any individual who wishes to deepen the understanding of a whimsical “character” of the 

saga  

of OOP. 



Romanian Journal of Information Technology and Automatic Control, Vol. 30, No. 4, 73-84, 2020  

   

75 

 

From here onward the paperwork is structured as follows: 

• general misconceptions on interfaces; 

• rationales for using interfaces, supported by tangible examples of OOP code; subservient 

to the purpose of highlighting the value of interfaces, some cases will illustrate in 

antithesis the outcome obtained by using interfaces vs the equivalent outcome attained 

without the contribution of interfaces; 

• discussions; 

• conclusions. 

2. Main general misconceptions on interfaces 

The intellectual frustration nourished by the author and generated by the abundance of 

misleading “answers” was the main motivation of writing this article. We shall start the journey into 

the domain of interfaces by trying to display some important misconceptions pertaining to interfaces. 

(a) The first main misconception is that: An interface is a contract to be fulfilled by 

implementing some void methods. 

We are of the opinion that interfaces are not a contract per se. We dare to disapprove. We think 

that this is a misconception recurrently imposed and easily accepted. Despite the fact that one can 

correctly assert that at anatomic level interfaces behave like a contract, at functional and 

“motivational” level interfaces are far from being a contract per se. In fact, this widespread myth is 

factually in a ridiculous contradiction with the semantics of the concept of “contract” offered by real 

life. Logically, why would anyone desperately seek to get involved in the bonds of contract? Why 

would anybody “sign” a contract instead of pursuing code development? Is there any perspective of 

gain in a contract based on compulsory supplementary implementations? Which is the exact goal  to 

accomplish? Is there any profit or convenience in deploying the effort of implementing a list of void 

methods? What drives the desire to enter an absurd ring of obligations that are time and  energy 

consuming ? 

Understanding interfaces suffers even more grievously from the contradiction with the 

philosophy of OOP ( Object Oriented Programming ) itself. The single real point of OOP is obtaining 

and maximizing comfort (ease) in the process of developing and managing code. No other real reason 

has OOP to exist, but comfort. Hence, the sole purpose of entering a contract simply contradicts the 

idea of comfort. In conclusion, interfaces cannot possibly be the fulfilling of a contract, per se. 

(b) The second main misconception is that: an interface is a chance to enjoy multiple 

inheritance. 

Again, we dare to disapprove, as we are of the opinion that the purpose of interfaces is not at 

all multiple inheritance per se. Again, we dare to disapprove. Despite the fact that one can correctly 

assert that at anatomic level interfaces can incarnate multiple inheritance, at a purpose-related level 

interfaces are absolutely not connected with the idea of multiple inheritance.  

This misconception comes in contradiction with the significance of the concept of 

“inheritance” in real life. 

In real life, inheriting something is a benefit-bringing event; it is neither a troublesome 

circumstance, nor an effort committed to fulfilling some severe contract. Inheritance means getting 

for granted an asset (a profit), not a torment. (Exactly in this spirit, inheritance in OOP is enjoying a 

whole functionality without any effort.) 

This misconception comes in contradiction with the significance of the concept of “multiple 

inheritance” in real life programming. In spite of the reverence due to C++ , one must admit that 

multiple inheritance is noxious. It is simply and straightforwardly against Nature.  



 Revista Română de Informatică și Automatică, Vol. 30, nr. 4, 73-84, 2020 

http://www.rria.ici.ro   

76 

  For example, objects  billy or jimmy are both instances of class. 

Human, having the pedigree  Human -> Mammal -> Vertebrate -> Animal. 

The fact that they simply happen to be engineers, or parents, or tourists or whatever else – does 

not modify their congenital status. Moreover so, inheriting something that compels the beneficiary to 

additional work, is again in conflict with the idea of comfort (the main if not the single existential 

reason of OOP). Objectively speaking, every object is a single entity (it is something) and possibly 

can do something else, this being exactly the reason for which the Java compiler and the C# compiler 

were strictly designed to forbid multiple inheritance. 

However, is implementing interface(s) not managing inheritance ? Obviously, yes, it is, but it 

is managing a stem of functional, special, technical, strange, unusual inheritance, instead of a stem 

of conceptual, classical, established inheritance. Interfaces are a pseudo-inheritance, an artificial 

inheritance. Interestingly, this is the intricate inheritance in which the assets are being provided by the 

inheritor instead of the parent class. 

3. The concrete benefit of using interfaces 

First and foremost, we consider opportune to underline that interfaces provide grouping 

facilities between otherwise totally unrelated classes. 

Even if physically they are abstract classes, interfaces are called as such for reasons of elegance 

and rigor: abstract classes are ancestors, whereas interfaces are connectors. As it is well-known, if 

various objects are all of-a-kind and share a common general behavior, then it is strongly 

recommended that they descend from a common base class (abstract class), whereas if they are totally 

unrelated and must share a common functionality, then it is obligatory that they use (implement) an 

interface. 

In the following section we shall present very specific examples of code ( C# ) capable of 

illustrating manifestly the role played by interfaces in the actual code development process. 

1) When grouping some objects in collections. The objects are totally different, but   

have a common functionality 

In this example we shall witness the first salutary effect of using interfaces. It will show   

plainly and clearly the difference between a sample of code that does not use interface, even if it 

should – and a sample of perfectly similar code (serving exactly the same functional purpose) that 

uses interfaces. 

Without interfaces, grouping “genetically separated” (unrelated) objects is counter-intuitive, 

implying also many tries and type castings, whereas with interfaces the same grouping is intuitive and 

no more in need of tries and type castings. 

Without Interfaces 

// define the classes 

class Avion { public void Print() { Console.WriteLine("Avion FLIES !"); } } 
class Birdy { public void Print() { Console.WriteLine("Birdy FLIES !"); } } 
class Hellyc { public void Print() { Console.WriteLine("Hellyc FLIES !"); } } 
class Rocket { public void Print() { Console.WriteLine("Rocket FLIES !"); } } 
 

// utilize the classes 

object[] flota = new object[4]; // --- object[] is anti-intuitive 

flota[0] = new Avion(); 
flota[1] = new Birdy(); 
flota[2] = new Hellyc(); 
flota[3] = new Rocket(); 
  

for (int i = 0; i <= flota.Length - 1; ++i) 
{ 

// --- many tries and castings 

 if (flota[i] is Avion) ((Avion)flota[i]).Print(); 



Romanian Journal of Information Technology and Automatic Control, Vol. 30, No. 4, 73-84, 2020  

   

77 

 else if (flota[i] is Birdy) ((Birdy)flota[i]).Print(); 
 else if (flota[i] is Hellyc) ((Hellyc)flota[i]).Print(); 
 else if (flota[i] is Rocket) ((Rocket)flota[i]).Print(); 
} 

With Interfaces 

// define the classes 

interface IFlies { void Print(); } 
class Avion : IFlies { public void Print() {Console.WriteLine("Avion 

FLIES !");} } 
class Birdy : IFlies { public void Print() {Console.WriteLine("Birdy 

FLIES !");} } 
class Hellyc : IFlies { public void Print(){Console.WriteLine("Hellyc 

FLIES !");}} 
class Rocket : IFlies { public void Print(){Console.WriteLine("Rocket 

FLIES !");}} 

 
// utilize the classes 

IFlies[] flota = new IFlies[4]; // *** IFlies[] is intuitive *** 

flota[0] = new Avion(); 
flota[1] = new Birdy(); 
flota[2] = new Hellyc(); 
flota[3] = new Rocket (); 
 

for (int i = 0; i <= flota.Length - 1; ++i) 
{ 

 flota[i].Print(); // *** no more extra tries and castings *** 
} 

2) Passing an object to a function. The object type can be known only at run-time, but 

the object belongs to a family with a certain functionality 

For example, let us assume that a Presentation, a Sheet, a Text or a Photo needs to be written 

to the Output Buffer of a Web Page; obviously, we can never know in advance which one of the 

four aforementioned imaginary features is requested by the remote client at a certain moment. 

Without interfaces, passing at random an object coming from “genetically separated” 

(unrelated) objects is counter-intuitive, implying also many tries and type castings, whereas with 

interfaces passing also at random the same object is intuitive and no more in need of many tries 

and type castings. 

Without Interfaces 

// define the classes 

class Prezentare { public void Write() { Console.WriteLine("Prezentare written to 

OutputBuffer !"); } } 

class Textul { public void Write() { Console.WriteLine("Textul written to 

OutputBuffer !"); } } 

class Sheet { public void Write() { Console.WriteLine("Sheet written to 

OutputBuffer !"); } } 

class Foto { public void Write() { Console.WriteLine("Foto written to 

OutputBuffer !"); } } 

 

class Pagina 

{ 

 // Reference to the object to be written to the Buffer, in order to be sent  

 // to the client. 

 private object Cuerpo = null; // --- object is counter-intuitive 

 

 public void OnLoad(string RequestFromClient) 

 { 

  if (RequestFromClient.ToUpper().IndexOf("PPT") != -1) Cuerpo =  

   new Prezentare(); 

  else if (RequestFromClient.ToUpper().IndexOf("SHEET") != -1) Cuerpo =  

   new Sheet(); 

  else if (RequestFromClient.ToUpper().IndexOf("TXT") != -1) Cuerpo =  



 Revista Română de Informatică și Automatică, Vol. 30, nr. 4, 73-84, 2020 

http://www.rria.ici.ro   

78 

   new Textul(); 

  else if (RequestFromClient.ToUpper().IndexOf("POZA") != -1) Cuerpo =  

   new Foto(); 

  if (Cuerpo == null) return;   

  RenderToBuffer(Cuerpo); 
 } 

 

 private void RenderToBuffer(object x) 
 { 

// --- many tries and castings 
// --- If it is necessary to add more along the way, 
// let's say, Video or Music classes, one will have to 
// record them in the list of matches. 

// The code will result both ugly and prone to errors.  
  if (x is Prezentare) ((Prezentare)x).Write(); 

  else if (x is Sheet) ((Sheet)x).Write(); 

  else if (x is Textul) ((Textul)x).Write(); 

  else if (x is Foto) ((Foto)x).Write(); 

 } 

} 

With Interfaces 

interface IContinut { void Write(); } 

class Prezentare : IContinut { public void Write() { Console.WriteLine("Prez. 

written to OutputBuffer !");} } 
class Textul : IContinut { public void Write() { Console.WriteLine("Textul 

written to OutputBuffer !"); }} 

class Sheet : IContinut { public void Write() { Console.WriteLine("Sheet written 

to OutputBuffer !"); } } 

class Foto : IContinut { public void Write() { Console.WriteLine("Foto written to 

OutputBuffer !"); } } 

 

class Pagina{ private IContinut Cuerpo = null; // *** IContinut is intuitive *** 

 

 // ICuerpo is the refrence to the object to be written to the Buffer in  
 // order to be sent to the client. 

 public void OnLoad(string RequestFromClient) 

 { 

  if (RequestFromClient.ToUpper().IndexOf("PPT") != -1) Cuerpo = 

   new Prezentare(); 

  else if (RequestFromClient.ToUpper().IndexOf("SHEET") != -1) Cuerpo =  

   new Sheet(); 

  else if (RequestFromClient.ToUpper().IndexOf("TXT") != -1) Cuerpo =  

   new Textul(); 

  else if (RequestFromClient.ToUpper().IndexOf("POZA") != -1) Cuerpo =  

   new Foto(); 

  if (Cuerpo == null) return; 

  RenderToBuffer(Cuerpo); 
 } 

 // *** no more extra tries and castings; elegant, convenient, safe code *** 

 private void RenderToBuffer(IContinut x) { Cuerpo.Write(); } 

} 

3) When a method of class List < T > uses a helper method of class < T > 

Let us suppose that we design a parameterized List <T> class that hosts all sorts of T-type elements. 

The method List<T>.Sort() will inevitably call a T-class comparison mechanism. Without interfaces, 

using a helper method of a parameter class T by a method of a container class would be clearly 

impossible, as the creator of the List <T> class would have to inject in-here the comparison 

method that might be used by any potential downstream developer; this is a case in which using 

interfaces is vital, mandatory. 

Without Interfaces 

In this example, using interfaces is mandatory. Now, here we assume that the general type T 

does not implement the Icomparable <T> interface. Method List<T>.Sort()would look  



Romanian Journal of Information Technology and Automatic Control, Vol. 30, No. 4, 73-84, 2020  

   

79 

like this: 

 

public void Sort() // example (1) without interfaces 

{ 

 ... 

 ... 

 int rez = 0; 

 

// --- ABSURD! The creator of the List <T> class 

// would have to inject in-here the comparison method that 
// might be used by any potential downstream developer.  

 

 if(T is Whatever) rez = elem[i].Against(elem[i + 1]); 

 else if(T is NimporteQuoi) rez = elem[i].CoincideAvec(elem[i + 1]); 

 else if(T is Qualcosa) rez = elem[i].DiversoDa(elem[i + 1]); 

 else if(T is Ceva) rez = elem[i].ComparaCu(elem[i + 1]); 

 ... 

} 

 

With Interfaces 

General type T implements interface IComparable <T>.  

// example (1) with interfaces 

class Whatever : IComparable <Whatever>, 

class NimporteQuoi : IComparable <NimporteQuoi>, 

class Qualcosa : IComparable <Qualcosa>, 

class Ceva : IComparable <Ceva> 

 

public void Sort() // example (1) with interfaces: the new look of List<T>.Sort() 
{ 

 ... 

 ... 

 int rez = elem[i].CompareTo(elem[i + 1]); // *** general, elegant, safe *** 

 ... 

} 

 

// example (2) with interfaces 

class Angajat : IComparable<Angajat> 

{ 

 public int Salary { get; set; } 

 public string Name { get; set; } 

 

 // IComparable  

 public int CompareTo(Angajat other) 
 { 

  if (Salary == other.Salary) return 0; 

  if (Salary < other.Salary) return -1; 

  if (Salary > other.Salary) return 1; 

  return -2; 

 } 

} 

// use: 
List<Angajat> list = new List<Angajat>(); 

list.Add(new Angajat() { Name = "Steve", Salary = 10000 }); 

list.Add(new Angajat() { Name = "Janet", Salary = 10000 }); 

list.Add(new Angajat() { Name = "Andrew", Salary = 10000 }); 

list.Add(new Angajat() { Name = "Bill", Salary = 500000 }); 

list.Add(new Angajat() { Name = "Lucy", Salary = 8000 }); 

list.Sort(); // Uses IComparable.CompareTo() 

4) When Domenico creates an upstream DLL and gives it to Ercole, who writes a     

downstream EXE. The DLL contains a non-derivable class, that Ercole will instantiate 

by the means of a factory and use only through already implemented interfaces 



 Revista Română de Informatică și Automatică, Vol. 30, nr. 4, 73-84, 2020 

http://www.rria.ici.ro   

80 

With interfaces, a versatile code results: regardless of the alterations that Domenico will make 

on his code in the future, the running of the code written by Ercole will remain unharmed. In addition, 

potential complications are basically removed for Ercole, since he does not have to know what 

classes will be operated “behind” his own code. 

 

// ************************** 

// * Domenico creates the DLL 

public interface IVolante { void Decola();} 

public interface IBeveCarburante { void VroomVroom(); } 
 

public class SalaDiProduzione // <== Factory Class Exported to be used Ercole. 

{ 

 // <== exported enumeration to be used by Ercole. 

 public enum Aeroplane { ARIETE, LEONE, SAGITTARIO, AERITALIAAIT320,  

     AERMACCHIAM3 }; 

 

 // <== Factory Static Function exported to be used by Ercole. 

 public static IVolante CreaApparatoDiVolo(Aeroplane tip) 

 { return new _Aereo(tip); } 
} 

 

// Accessible only inside this DLL, hence only by Domenico. 

internal class _Aereo : IVolante, IBeveCarburante  

{ 

 void IVolante.Decola() { Console.WriteLine("Sto decollando !"); } 
 void IBeveCarburante.VroomVroom() { Console.WriteLine("Bevo Kerosen !"); } 
 

 // Constructor 

 public _Aereo(SalaDiProduzione.Aeroplane tipul) 
 { 

  // *** Regardless of the alterations that Domenico will make on this  

  // code in the future, the running of the code written by Ercole  
  // will remain intact (unharmed. 

  // 

  // *** Ercole does not have to know what classes will be 
  // operated by his own code. 

  Console.WriteLine("Aeroplano Italiano del tipo = {0}", tipul); 
 } 

} 

//  

// ************************************************************************** 

// * Ercole creates the EXE, after having imported the DLL given by Domenico. 
// 

// a) Uses the factory to create the airplane 
IVolante v = 

SalaDiProduzione.CreaApparatoDiVolo(SalaDiProduzione.Aeroplane.LEONE); 
 

// b) Uses the appropriate interface to get the airplane perform the taking-off 
v.Decola(); 
 

// c) Uses the appropriate interface to keep the airplane flying 
IBeveCarburante turbo = v as IBeveCarburante; // Ercole must switch the interface 

if (turbo != null) turbo.VroomVroom(); 

5) Code Testing 

Interfaces help isolate bugs because they limit the scope of a possible logic error to a given 

subset of methods. 

6) COM interoperability 

Interfaces are crucial when importing a DLL developed in VB 6.0 into a project written in C++, 

and vice-versa. Interfaces are vital when developing a C#.Net DLL to be imported into a project 

written in VB 6.0 or C++, and vice-versa. 



Romanian Journal of Information Technology and Automatic Control, Vol. 30, No. 4, 73-84, 2020  

   

81 

 

7) Effective Teamwork 

Let us suppose that within a software company there be two teams, working on different 

components that must co-operate (must be coupled). If the two teams sit down on day ONE and agree 

on a set of interfaces, then starting from day TWO they can go their separate ways and implement 

their components around those interfaces. Team A can build test that harnesses and simulate the 

component coming from Team B, for testing, and vice versa. Consequently, the department gains 

parallel development and fewer bugs. 

8) Elastic development 

Let us suppose that a developer writes the following method that returns an array after having 

retrieved some data from a DataBase. 

Without interfaces, this code might prove to be rigid: it returns only a VectorList type  value. 

Changing at some moment the returned type would result in catastrophic consequences for the 

downstream code: a tiny code change in the back-end will require adjustments in countless  different 

classes all across the World. 

With interfaces, the same code becomes elastic (versatile): when it returns an interface, every-

thing that is pointed to by that interface is easily replaceable. In addition, this case is acceptably 

illustrated by the metaphor stating that interfaces are “a board with sockets where one can plug 

different electrical appliances”. 

 

public VectorList getUsefulData(String query) 
{ 

// 

// 

// This code is rigid: it returns only a VectorList type value. 
// Changing the returned type would result in catastrophic consequences  
// for the downstream code: a tiny code change in the back-end will  
// require adjustments in many different classes all across the World. 

// 

 VectorList rval = new VectorList(); 
 

// magical code that gets the useful data 

// ... 

  

// ret 

return rval; 

} 

But this code might prove to be rigid. For instance, what if at some point the hypothetic    

developer finds that is mandatory to use (consequently to return), say, a LinkedList, or a 

DoublyLinkedList instead of the initial VectorList, as the new container happens to be more 

efficient for a particular purpose? For the downstream code, the consequences would be catastrophic: 

a tiny code change in the back-end will require adjustments in countless different classes all across 

the World. In order to prevent this kind of situation to occur, interfaces are a brilliant       solution: 

 

public ILista getUsefulData (String query) 
{ 

// 



 Revista Română de Informatică și Automatică, Vol. 30, nr. 4, 73-84, 2020 

http://www.rria.ici.ro   

82 

// This code is elastic (versatile): it returns an interface, i.e.ILista, 

so 
// everything that is pointed to by ILista is easily replaceable. 

// Obviously, class VectorList, class LinkedList and class 

DoublyLinkedList  

// MUST implement interface ILista.  
// 

 ILista rval = new LinkedList(); // VectorList(), DoublyLinkedList()... etc 

  

// magical code that gets the useful data 

// ... 

  

// ret 

return rval; 

} 

4. Discussions 

Drawbacks of Using Interfaces 

If one adds a new method to an interface, he/she must track down all implementations of that 

interface in the Universe and provide them with a concrete implementation of that method, whereas if 

one adds a new method to an abstract class, he/she has the option of providing a   default 

implementation of it, so all existing code will continue to work without change. It is the dedicated 

standard rule that when creating an interface, one must be sure that everything be  designed correctly 

and completely the first time. Once that interface is published and goes to the client, changes are 

extremely difficult to impose. Once the creator changes that interface,    everyone else’s code breaks. 

It's possible to work around the issue presented above by creating a new interface that extends 

or supplements the original one, but the downstream developer will still have to change his concrete 

implementations in order to comply with the new interface, instead of - or in addition to - the 

previous (old) one. 

Speed: Interfaces are slow, because they require extra indirection to find the corresponding 

method in the actual class. Modern JVMs (Java Virtual Machines) are discovering ways to    reduce 

this speed penalty. Unlike interfaces, abstract classes are fast. 

Interfaces are not generally used when throwing/catching exceptions (functional errors), in this 

case classes being the best instrument to incarnate specific exceptions [5]. 

5. Conclusions 

In the vast majority (if not in the quasi-unanimity) of the paper-works indented to introduce (or 

comment on) elements of knowledge pertaining to Object Oriented Programming - interfaces,       

neglectfully and academically presented, sadly risk to remain a bizarre, tenebrous topic. Instead, this 

article aims to emphasize, by the means of concrete sample of what we think to be an elegant code, 

the benefactor role of interfaces. 

The whole role of interfaces in quite simple: basically, they provide grouping facilities between 

otherwise totally unrelated classes. 

Despite the fact that from anatomic point of view implementing interfaces represents operating 

with (multiple) class inheritance, from functional point of view implementing interfaces do not at all 

refer to inheritance per se: inheritance is pure parenthood, whereas interfaces incarnate available 

parenthood in the service of (intended to ensure) artificial, ad-hoc brotherhood. 

Interfaces do refer to a specifically functional, strange, unusual inheritance, instead of a 

conceptual, classical, established inheritance. Interfaces incarnate a pseudo-inheritance, an artificial 

inheritance, a sui generis inheritance in which assets are provided by the inheritor class instead of 



Romanian Journal of Information Technology and Automatic Control, Vol. 30, No. 4, 73-84, 2020  

   

83 

the parent class. 

 

Interfaces do not materialize filiation or parenthood, but brotherhood. To summarize, 

interfaces are available fatherhood meant to serve necessary, forced brotherhood. The metaphor that 

interfaces are a contract does not offer the best solution to understanding interfaces. The rigorous 

formulation would be: “interfaces may be regarded as a mutually profitable contract in that that in 

order to enjoy coupling totally unrelated objects (but sharing a certain functionality), the developer is 

compelled to implement every method of a given interface, in every inheritor class”. 

Are interfaces a panacea ? Absolutely not. Using interfaces is simply a matter of choice. 

However, in some critical situations, using interfaces offers the chance to write a simple, elegant, 

easy to maintain, convenient and safe code / versatile code, whereas not using interfaces leads to a 

luxuriant, prone to errors code / rigid code, respectively. 

 

Acknowledgement 

This article is the result of the software developing activity that the author has performed    

within the Project “RO-SmartAgeing; 2020 phases”. 

 

REFERENCES 

1. Antal, Margit (2020). Object-Oriented Programming in Java. Univ. Sapientia, Tg. Mureş, 

2020, https://ms.sapientia.ro/~manyi/teaching/oop/oop_java.pdf. 

2. Bersini, Hugues – La programmation orientée objet - 4e édition: Cours et exercices en UML2, 

Université Libre de Bruxelles, https://www.academia.edu/12016134/La_programmation_ 

orient%C3%A9e_objet_4e_%C3%A9dition_Cours_et_exercices_en_UML2. 

3. Frasinaru, Cristian – Curs de programare în Java. Univ. Alex. Ioan Cuza, Iaşi, 

https://ms.sapientia.ro/~manyi/teaching/oop/oop_java.pdf. 

4. Germain, James – Interfaces in Object Oriented Programming Languages. University of Utah, 

https://www.cs.utah.edu/~germain/PPS/Topics/interfaces.html. 

5. Ivan, Mihaela (2013). Analiză comparativă a programării orientate pe obiecte în limbajele de 

programare -  ABAP şi Java. Revista Română de Informatică şi Automatică – RRIA 

(Romanian Journal for Information Technology and Automatic Control), https://rria.ici.ro/wp-

content/uploads/2013/03/07-art.-Mihaela-Ivan.pdf. 

6. Keogh, Jim & Mario Giannini, Mario (2004).  OOP Demystified. McGraw Hill, 2004. 

7. Spasojevic, Marinko – C# Intermediate – Interfaces, https://code-maze.com/csharp-

interfaces/#explicitinterfaceimplementation. 

 
 
 
 
 
 

 
 

 

 

 

 



 Revista Română de Informatică și Automatică, Vol. 30, nr. 4, 73-84, 2020 

http://www.rria.ici.ro   

84 

 

 

 

 

 

 
 
 

Dragoş NICOLAU este absolvent al Facultăţii de Electrotehnică din cadrul Universității  

“Politehnica” Bucureşti, în anul 1991. În prezent este cercetător știinţific gradul III în cadrul 

Institutului Național de Cercetare-Dezvoltare în Informatică – ICI Bucureşti. Este specializat în 

dezvoltarea de aplicaţii Web, desktop şi reţea. Este foarte pasionat de zonele puţin explorate ale 

programării orientate pe obiect. Drept arii de interes, Dragoș Nicolau mai menționează: securizarea 

reţelelor, securizarea codurilor javascript şi fizica semiconductoarelor. Domnului Dragoș Nicolau îi 

place să studieze şi să implementeze aplicaţii software bazate pe fire de execuție, algoritmi de 

criptare/compresie, analiza de imagine şi comunicații reţea. A publicat peste 30 de articole în ţară şi 

străinătate. Între anii 1997-2002 a desfăşurat activitate didactică la Facultatea de Electrotehnică din 

Universitatea “Politehnica” din București. Dragoș Nicolau este vorbitor fluent de italiană, franceză şi 

engleză.  

 

Dragoș NICOLAU has been graduated from The School of Electrical Engineering of 

Politehnica University of Bucharest, class of 1991. Currently he holds the position of scientific 

researcher –level III at National Institute for Research and Development in Informatics – ICI 

Bucharest. His area of expertise include developing web, desktop and network applications. He feels 

strongly passionate about the ”uncharted territories” of Object-Oriented Programming. As his 

personal fields of occupational interests, Dragoș Nicolau would also mention: securing networks, 

securing javascript codes, and semiconductor physics. Mr. Nicolau is  particularly kin on studying 

and deploying software based on execution threads, encryption / compression algorithms, image 

analysis, and network communications. He has published more than 30 articles with nationwide and 

foreign / international/ outreach. Between 1997-2002 he has been involved into the Academic 

teaching activity at the Faculty of Electrical Engineering of UPB. Dragoș Nicolau is fluent in Italian, 

French, and English. 


