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Abstract: In this project, the effect of aircraft body flexibility in aerodynamic mode was studied. In the  se-

cond section, assuming creation of bending in the body by horizontal and vertical tails, the longitudinal and 
transverse stability derivatives of the aircraft were obtained and, as shown, body flexibility reduced stability 

of the aircraft and also reduced power of tail control surfaces. This decrease increases with increasing speed 

such that these effects are noticeable at higher speeds. In the next section, natural frequencies of aircraft 

structure were obtained by discretization of continuous masses into discrete concentrated masses, and as  

observed, as the number of masses increased, the obtained results became more accurate and converged   

toward real value. However, if the plane is subjected to unplanned maneuver of plunging in critical conditi-

ons and given the fact that the aircraft has not been designed for such maneuvers, the impact of body flexibi-

lity in such conditions would be significant, that as was observed, through aerodynamic considerations and 

ABAQUS software outputs, airplanes can achieve complete safety. After aerodynamic examination of flight 

of elastic airplanes, the issue of controlling these planes can be considered. For this purpose, it is necessary to 

obtain airplane conversion function with regard to flexibility of the structure. In this case, the zeros and poles 

of elastic airplane conversion function will be different from stiff state and require      specific measures. 
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1. Introduction 

In common flight mechanics references and books, the equations of aircraft motion are gene-

rally obtained by assuming stiffness of aircraft structure, and the impacts of flexibility of structure 

are not considered. In cases where natural frequencies of aircraft aerodynamics, assuming stiffness, 
are significantly different from natural vibrational frequencies of structure, stiffness assumption in 

order for aerodynamic analysis of the aircraft will be consistent with reality to an acceptable extent. 

But as flexibility of structure increases and natural vibrational frequencies of structure decrease, 
this difference is reduced and the assumption of structure stiffness will no longer be acceptable 

(Chernyshev et al., 2019). This has caused experts in the field to take into account flexibility of 

structure in obtaining aircraft motion equations. With the development of larger aircrafts with long 
body and much wider wing span in the 1950s, as well as the use of jet engines and increased air-

craft speed, numerous problems arose and some of them led to fatal accidents. Also, use of new 

alloys and newly emerging composites in the following years led to dramatic increase of flexibility 

of structure, such that not taking into account the flexibility of structure in large subsonic and speed 
of sound aircrafts as well as supersonic fighter planes not only reduced accuracy of analysis, but 

also provided completely false results to analysts. In fact, flight aerodynamic modes and structure 

vibrational modes are coupled together (Cui et al, 2018). But this dependency is typically much 
lower in small and low-speed aircrafts in comparison with large and high-speed aircrafts, as in 

small and low-speed aircrafts the natural frequency of longitudinal and latitudinal flight modes, 

including Short Period, Long Period, Roll, Duch-roll, and Spiral, are much less than natural vibra-
tional frequencies of structure; such that the dependency of flight and vibration modes of the struc-

ture can be neglected and not taking into account flexibility of structure does not cause any signifi-

cant error (Du & Tang, 2018). 

Table 1 compares the lowest natural frequencies of some aircrafts (Guttag & Reis, 2017).     
It is observed that in planes such as Concord, B-1 and C-5, the lowest natural frequency is in the 
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range between 11 and 13 radians per second. Therefore, it is necessary to determine the effects of 

structure flexibility on aircraft aerodynamics. This is discussed in the following sections in detail. 

Table 1. The lowest natural vibrational frequency of some different aircraft types 

Aircraft name Aircraft type Natural frequency rad/sec 

B-1 Supersonic Bomber 13 

Concord Supersonic Passenger 13 

C-5 Heavy Transport 11 

Airbus 380 Heavy Passenger 6.25 

2. Materials and methods 

Motion equations of six degrees of freedom of elastic airplane 

The method for finding the simplest mathematical model for elastic aircraft in order for ae-
rodynamic flight analysis and control system design has always been one of the most important 

issues discussed in aerodynamics of flying objects. Considering the issues discussed in the previous 

section, taking into account flexibility of structure is so much crucial in designing next-generation 
aircrafts. Reduced weight of structure, lack of aerodynamic stability, and use of very complex fe-

edback control systems lead to reduction of frequency distances of flight modes of stiff aircraft and 

frequency of vibrating modes. In addition, the ability to apply control systems with the ability of 

reshaping the structure requires careful modeling of the flying object taking into account structure 
flexibility. Therefore, it is especially important to investigate the effects of structure flexibility on 

aircraft flight responses, which requires integrating aircraft’s motion and vibration equations. Ob-

taining motion equations of elastic airplane has been studied by Heinz (2017), Ideen (2020), Li et 
al. (2020), Naveen (2018). Stalewski, & Żółtak (2012), and Tuzcu (2016) have investigated the 

coupling between stiff aircraft modes and elastic modes. Warren Woodrow (2013) simulated flight 

of elastic airplane. This study showed that  increasing flexibility of structure even to a moderate 

extent, negative effects on quality of aircraft direction will be created.  

Obtaining motion equations of elastic airplane 

In this section a continuous model for aircraft including motion and vibration equations of 
structure is presented (Xianhong et al., 2017). Motion equations of aircraft in body device will be 

obtained. In this case, the obtained model can be used for various flight simulations. It is necessary 

to make some assumptions in order to achieve this goal. By considering structural deformations to 
be small (first hypothesis), linear elastic theory can be used. It is also assumed that natural vibratio-

nal frequencies of structure as well as form of modes have been obtained using methods such as 

Finite Element or other methods (second hypothesis). In this case, using Lagrange equation directly 

results in obtaining motion equations as ordinary differential equations expressed in terms of gene-
ralized forces along with aerodynamic and propulsion forces. The degrees of stiff and elastic fre-

edom of aircraft are eventually coupled together by these forces. In order to express the generalized 

aerodynamic forces in terms of form of modes, forces, and aerodynamic moments, integral expres-
sions will be obtained. Using Aerodynamic Strip Theory, analytical expressions for aerodynamic 

forces and moments are obtained. Use of Aerodynamic Strip Theory does not mean priority of this 

method over other methods; rather, some coefficients can be obtained by practical methods or nu-
merical methods. In case of invention of better methods in this regard, the existing methods can be 

replaced by them. However, use of Aerodynamic Strip Theory has two advantages. In the early 

stages of design and when accurate information about final design is not available, this method can 

provide relatively acceptable responses for high aspect ratios. Also, importance of this method is 
evident as it results in obtaining analytical expressions that, compared to numerical results, provide 

a better view to designers. 
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Aerodynamics of unconstrained elastic object  

The position of a mass element dv  of an elastic object in inertial coordinate system  

can be considered based on the position of that element in a local device ( ) and the local de-

vice coordinates relative to inertial coordinates ( ) as shown in Figure (1), such that    

+= 0RR . Then, kinetic energy of the whole object will be: 


dt

Rd

dt

Rd
T

V
= 2

1
dV        (1) 

If the local coordinate system rotates at an angular velocity of relative to the inertial 

coordinate system  , and each of mass elements are considered as point masses (simplifying 

assumption 3), then: 

 
Figure 1. Position of mass element 
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Potential energy of object includes elastic strain energy and potential energy resulted from 

gravity. Potential energy resulted from gravity is equal to: 

 +−=
V

g pRgU )( 0 dV        (4) 

Where, g  represents gravity acceleration vector. Elastic strain energy resulted from object 

deformation is equal to the work done to cause the deformation in the object. If position of a point 

of the object is stated based on its position before deformation, ),,( zyxs , plus the displacement 

caused by deformation, ),,,( tzyxd , then the position of each element will be equal to: 

dsp +=          (5) 

According to D’Alembert’s Principle, strain energy is equal to: 
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Determination of aerodynamic forces 

Now the aerodynamic forces must be determined. For this purpose, the aerodynamic forces 

and moments must be examined individually. 

Determination of lift and moment forces of the torsion resulted from bending and torsional 

vibration of the wing: 

One way to determine aerodynamic forces is to use strip theory. The underlying assumption 

of this theory is that lift aerodynamic force (per unit width of wing) on a two-dimensional airfoil 

depends on angle of attack of the airfoil cross section . 

slcCVl  202

1
=          (7) 

So, total lift force for the aircraft is expressed as below: 
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b

b wingfuselage dyldylLL       (8) 

To illustrate application of strip theory for elastic aircraft and simplification, a straight wing 

(without backwardness) with opening of according to Figure 2 is considered. According to  

geometry of the cross section as well as the effect of vibration on deformation of wing, the angle of 

attack of cross section can be estimated as below: 

 
Figure 2. Wing cross section 

 
Figure 3. Two-dimensional cross section of wing 
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Where, ]/[tan 1 UWv

−  is equal to angle of attack of the aircraft,  is angle of wing instal-

lation,  is displacement resulted from wing bending in line with z due to i-mode, and  dxd b

i /  

is torsional displacement of cross section due to i-mode assuming no change in shape of the cross-

section. 
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By placing angle of attack from the above equation in equation (10), the following equation 

for lift force of the whole wing is obtained: 

 


=
++++++=

10

2

0 )(
2 i iiLiiLLLqLpvLLw CCCqCCCC

SV
L 





  (10) 

In this example, a straight wing with no angle of backwardness has been examined and down 

wash effects have also been ignored. The coefficients related to were also not considered. 

However, these terms can also be considered. 

For torsional moment, M, also using a similar procedure, a similar equation can be obtained. 

 


=
++++++=

10

2

0 )(
2 i iiMiiMMMqMpvMM CCCqCpCCC

cSV
M 





 (11) 

Not considering the effects of cross section drag, all the coefficients of equations (12) and 

(13) can be obtained. These coefficients are shown in Table 2. The coefficients related to other for-
ces and moments are obtained similarly. A similar procedure is used to determine the generalized 

forces for elastic degrees of freedom. Figure 3 shows the forces and moments applied to a wing 

cross section. In the figure, two degrees of elastic freedom have been considered for bending and 
torsion of the wing. So, the work done for the whole elastic deformations is equal to the sum of the 

work done to create the bending and the work done to create the torsion. Not considering the drag 

force we will have: 
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So, the generalized forces for degrees of elastic freedom are obtained as below: 
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Assuming cosαs= cosαv equation 15 can be estimated as below: 
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The coefficients of generalized forces for degrees of elastic freedom, equations 17 and 18, 

can be expressed as aerodynamic coefficients. For example: 
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Other coefficients related to generalized forces of and  can be defined similarly. By 

combining all the coefficients related to generalize forces, the general coefficients are obtained. For 

example, by expanding coefficients of forces, the following equation is obtained: 
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By arranging equation 19, the following equation is obtained: 
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Obtaining motion equations of concentrated masses 

Now, this method is described in the form of a simple example for wing of the plane (Tuzcu, 

2016). In this method, using Lagrange equation, motion equation of concentrated masses is obtai-
ned and then using the obtained equations, natural frequencies and shape of modes are obtained. To 

use Lagrange equation, kinetic energy and potential energy of each concentrated mass must be cal-

culated. 

Q
q

U

q

F

q

T

q

T

dT

d

jjjj

=



+




+




−




















       (20) 

 

 
Figure 4. Discrete mass of aircraft wing 

In the forces shown in Figure 4, s represent the forces exerted on each of the discrete mas-

ses that here, these forces include the forces caused by gravity as well as aerodynamic forces.  

These forces are combined together and are exerted in Lagrange equation as generalized forces, Q. 

It should be noted that due to symmetry of the system, only one wing is considered for analysis.  

 
Figure 5. Discrete mass model for half of the wing 

According to Figure 5, displacement of q0 is measured relative to reference coordinates and 

displacements of q1 and q2  are measured relative to elastic axis of the wing. Considering the above 

points, kinetic energy of the system will be as below: 
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Given that z0=q, z1=q0+q1 and z2=q0+q2, equation (2) after simplification will be as below: 
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Where, mT=m0+m1+m2. 

Potential energy of the system consists of two parts of potential energy resulted from gravity 

due to vertical displacement, Ug and potential energy resulted from internal strain, Ui. Strain poten-

tial energy will be equal to: 
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kij represents coefficients of effect which will be described below. Gravitational potential energy 

equals to: 

)()()( 20210100 qqPqqpqPU gggg +−+−−=       (24) 

And aerodynamic forces will also be equal to: 

22112100 ,, aaaaa PQPQPPPQ ==++=       (25) 

By obtaining partial derivative of equation (26) relative to 
0q  the following equation is obtained: 
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By obtaining the derivative of equation (27) relative to time, the following equation is obtained: 
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Partial derivative of equations (28) and (29) relative to 0q  are zero; but partial derivative of equati-

on (5) is equal to: 
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By placing equations (26), (27) and (28) in Lagrange equation, the following equation is obtained: 
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The same method is used in order to obtain the other two equations. Full description of ob-

taining the other equations is given in Reference (Warren Woodrow, 2013). The aerodynamic 

equations of the system are as below: 
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Equations (31) can also be shown in the following matrix form: 
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[mij] is inertia matrix and [kij] is matrix of coefficients of effect. Matrix of coefficients of effect is 

equal to inverse of stiffness matrix [Cij]. So, 

[kij] = [Cij]
-1         (32) 

Members of stiffness matrix, [Cij] s, represent the deviation created at the point i due to the 

effect of unit load on the point j.n also indicates the number of degrees of freedom of the system. 

Obtaining natural frequencies of wing and body of the aircraft 

Using the equations obtained in this section and structural information of passenger aircraft 

shown in appendix (1), the structure of this aircraft has been modeled as concentrated masses con-

nected to each other by bending elements without mass according to Figure 6. 

 
Figure 6. Concentrated mass model of aircraft 

Information on masses and elements. Figure 5 shows the first natural vibrational frequency 

of aircraft wing. As it can be seen, by discretization of the wing into 3 concentrated masses, the 
calculated frequency is equal to 7.6 radians per second and with increasing of the number of mas-

ses, the calculated frequency is converged toward the real value. By considering 12 concentrated 

masses, the calculated frequency is equal to 13.2 radians per second. 

 
Figure 7. The first natural frequency of aircraft wing considering different numbers of masses 

 
Figure 8. The second natural frequency of aircraft wing considering different numbers of masses 

In Figures 9, 10 and 11, the second, third and fourth natural frequencies, respectively, calcu-

lated considering different numbers of concentrated masses have been shown. As can be seen in all 

these figures, as the number of concentrated masses increases, the calculated frequency becomes 

more accurate and converges toward real value. 

 
Figure 9. The third natural frequency of aircraft wing considering different numbers of masses 
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Figure 10. The fourth natural frequency of aircraft wing considering different numbers of masses 

Summary of the results obtained for wing is shown in Table 2. 

Table 2. Natural vibrational frequencies of aircraft wing considering different numbers of masses 

Number of masses The first frequency 

(Radian per se-

cond) 

The second fre-

quency (Radian 

per second) 

The third fre-

quency (Radian 

per second) 

The fourth fre-

quency (Radian 

per second) 

3 7.6029 34.355 - - 

5 11.2 34.096 65.099 315.14 

7 12.59 40.417 97.046 137.67 

9 13.228 42.317 88.548 151.16 

12 13.223 42.464 89.723 152.9 

3. Results 

Obtaining natural frequency of aircraft body 

Similar to the previous section, using structural information of aircraft body and considering 
one-end closed beam model for the body such that the center of mass is the support and the end of 

the aircraft is the free end of the beam, and using the equations in the previous section, natural   

vibrational frequencies of body of the aircraft have been calculated. Similar to the results obtained 
for wing, it can be seen that as the number of masses increases, the obtained results converge     

toward real value. Figure 11 shows the first natural vibrational frequency of the body considering 

different numbers of concentrated masses. 

 
Figure 11. The first natural frequency of aircraft body considering different numbers of masses 

By considering 3 concentrated masses, the calculated frequency is equal to 30.43 radians per 

second, and by considering 6 concentrated masses, this frequency is equal to 32.67 radians  

per second. 

 
Figure 12. The second natural frequency of aircraft body considering different numbers of masses 
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Figure 13. The third natural frequency of aircraft body considering different numbers of masses 

 
Figure 14. The fourth natural frequency of aircraft body considering different numbers of masses 

Table 3. Natural vibrational frequencies of aircraft body considering different numbers of masses 

Number of 

masses 

The first fre-

quency (radian per 

second) 

The second fre-

quency (radian per 

second) 

The third fre-

quency (radian per 

second) 

The fourth fre-

quency (radian per 

second) 

3 30.434 199.97 - - 

5 32.332 252.07 794.66 1517 

6 32.675 250.78 854.34 1521.4 

Finite Ele-
ment method 

28.32 220.18 749.41 1120.23 

Figures 11, 12, 13 and 14 show the second, third and fourth natural frequencies calculated in 

radians per second, respectively, for aircraft body considering different numbers of concentrated 

masses. As can be seen in all these graphs, as the number of concentrated masses increase, the cal-
culated frequency converges toward the real value. The results obtained from calculation of natural 

frequencies of the aircraft body are shown in Table 3. Also, natural frequencies of the   aircraft bo-

dy have been calculated using Finite Element method, the obtained results of which show that the 
results obtained from the two methods are similar to each other. As the results of   calculation of 

natural vibrational frequency of aircraft body show, the body of the aircraft has significant 

stiffness. In order to observe the effects of body flexibility on aircraft aerodynamics, these calcula-

tions have been done assuming increasing flexibility of body, similar to the case done in the third 
section, assuming increasing the flexibility 10 times, so that they obtained results can be used in 

flight simulation of elastic aircraft. The results of these calculations are shown in Figures 15 to 18. 

 
Figure 15. The first natural frequency of aircraft body considering  

different numbers of masses for highly elastic body 

 

As can be seen, as the flexibility of body increases to the extent stated, a significant reducti-

on in the aircraft’s natural frequencies is created such that flexibility effects of the aircraft body on 

its aerodynamics cannot be ignored. 
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Figure 16. The second natural frequency of aircraft body considering  

different numbers of masses for highly elastic body 

 
Figure 17. The third natural frequency of aircraft body considering  

different numbers of masses for highly elastic body 

 
Figure 18. The fourth natural frequency of aircraft body considering  

different numbers of masses for highly elastic body 

Also, the process of increasing accuracy of the calculated frequency can be observed in these 

forms similar to the previous cases. 

Table 4. Natural vibrational frequencies of aircraft body considering  

different numbers of masses for highly elastic body 

Number of mas-

ses 

The first fre-

quency (radian 

per second) 

The second fre-

quency (radian 

per second) 

The third fre-

quency (radian 

per second) 

The fourth fre-

quency (radian 

per second) 

3 9.257 63.237 - - 

5 10.224 79.713 251.29 479.73 

6 10.333 79.304 270.16 481.11 

 

Summary of the results obtained in this section is shown in Table (4). 

This section described how to obtain natural frequencies and shape of modes of continuous 
systems, and natural frequencies of aerodynamics of wing and body of passenger aircraft were   

calculated. The obtained results in this section will be used to simulate aircraft flight considering 

flexibility of its structure. 

4. Conclusion  

In this project, the effect of aircraft body flexibility in aerodynamic mode was studied. In the 
second section, assuming creation of bending in the body by horizontal and vertical tails, the longi-

tudinal and transverse stability derivatives of the aircraft were obtained and, as shown, body flexi-

bility reduced stability of the aircraft and also reduced power of tail control surfaces. This decrease 
increases with increasing speed such that these effects are noticeable at higher speeds. In the next 

section, natural frequencies of aircraft structure were obtained by discretization of continuous masses 

into discrete concentrated masses, and as observed, as the number of masses increased, the obtained 
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results became more accurate and converged toward real value. In investigations, passenger aircrafts 

have relatively high stiffness such that flexibility effect of body on aircraft cruise flight is not signi-

ficant. However, if the plane is subjected to unplanned maneuver of plunging in critical conditions 
and given the fact that the aircraft has not been designed for such maneuvers, the impact of body fle-

xibility in such conditions would be significant, that as was observed. So it is necessary to obtain air-

plane conversion function with regard to flexibility of the structure. In this case, the zeros and poles 

of elastic airplane conversion function will be different from stiff state and require specific measures. 
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