
Romanian Journal of Information Technology and Automatic Control, Vol. 35, No. 1, 23-36, 2025 23

https://doi.org/10.33436/v35i1y202502

TangleNet: An advanced cyber deception model based on

reinforcement learning
Tahani GAZDAR*, Lara MURAD, Safana AL-JAHDALI, Fai ZWAWI, Reman MANDILI

Cybersecurity Department, College of Computer Science and

Engineering University of Jeddah, Jeddah, Saudi Arabia

*Corresponding Author: Tahani GAZDAR

taalgazdar@uj.edu.sa

Abstract: Detecting network attacks is becoming a challenging task given that they are getting more

complex. Almost all modern security systems can identify attacks in the early and final, but not in the middle

stages. This limitation is caused by the fact that the detection of the nature of an attacker requires a deep

investigation of the attack pattern. It means that the detection of the attack after its occurrence is useless since

the harm has already been inflicted. Early signs can give quite a lot of false positive results. Consequently,

cyber deception strategies are applied to fill this gap and improve the blue team’s knowledge of the attackers’

fundamental strategy. This research introduces an integrated cyber deception system called TangleNet that

incorporates reinforcement learning to build a research honeynet that simulates real servers and attacker

activity. The outcome of the experimentation conducted using Microsoft’s CyberBattle platform and the

Mininet library shows the level of deception of the cyber deception model is correlated to the number of

commands executed by the attacker. This enhanced effectiveness extends the interactiveness time and allows

for the tracking of potentially hostile entities with little dependency on human intervention.

Keywords: Cyber Deception, Reinforcement Learning, Agent, Action, Q-Learning.

1. Introduction

The security community continues to face threats from the growing frequency of

sophisticated cyberattacks and subsequent disruption to the systems. Current security solutions

frequently focus their detection on recognizing threats in discrete incidents, which is insufficient

for identifying complex multi-stage attacks. The challenge of recognizing cyber-attacks has taken a

new shift because of several factors. Specifically, cyber attackers are using new trends, which are

multi-stage and composite attacks that cannot be captured by conventional detection solutions like

firewalls, intrusion detection systems, or even traditional honeypots. Moreover, most of the

attackers use stealth techniques such as encryption, disguising as other processes, or polymorphism

with which to evade detection by the security systems. The computing environment also becomes

heterogeneous due to which they are more complex in nature. Therefore, it is challenging to

monitor their presence and prevent unauthorized access (Biplob, Marma & Akther, 2024). Nearly

all security solutions available in the market can detect attacks in their initiation phase as well as

final stages, but none address the middle stages. This limitation is well justified because identifying

an attacker’s primary methodologies demands further research. Finding that an attack has occurred

once it has happened is of little use since the damage has already been done. Moreover, the issue of

early detection can be very deceptive because the system often produces a high false positive and

may change based on the network and environment. The cyber deception solutions are used by blue

teams to bridge this gap and expand their perspective on attack patterns and techniques. Cyber-

deception aims to provide fake and misleading information and create a kind of allusion to the

attacker about the target system (Javadpour et al., 2024). The blue team deploys decoy systems to

attract attackers and interact with them to gather knowledge about their tactics, techniques, and

procedures (TTPs). Cyber deception techniques are efficient in detecting zero-day attacks with a

nearly zero false positive rate because only attackers interact with a decoy system (Javadpour et al.,

2024). Although conventional honeypots provide a certain level of defense, the attackers use

sophisticated methods and techniques and this makes these simple decoy systems lose their

effectiveness. A major drawback of the conventional decoy systems is the fact that the attackers

can easily notice them due to their fingerprinting which depends on the specific and predictable

24 Revista Română de Informatică și Automatică, Vol. 35, nr. 1, 23-36, 2025

http://www.rria.ici.ro

behavior of the decoy systems. Furthermore, most conventional honeypots are developed to interact

with known attack scenarios, which limits their applicability. For example, many decoy systems

only address the SSH behavioral scenarios since they can easily mimic the attack and since it is

among popular targets. However, this somehow dismisses other vulnerabilities in the network

protocols such as FTP and HTTP which are also commonly used. Additionally, most existing

solutions rely on datasets and this decreases their interactivity and deceptiveness. Therefore, a new

conceptual model for the design of such models is imperative. This paper presents TangleNet, a

new research cyberdeception system that utilizes Reinforcement Learning (RL) to overcome

the aforementioned limitations. TangleNet aims to provide an active, heterogeneous, highly

interactive cyber deception system by merging the concept of deception with the adaptability of

Reinforcement Learning techniques. Reinforcement learning (RL) allows an agent to learn through

trial-and-error feedback in an interactive environment (Maddireddy Bharat Reddy & Maddireddy,

Bhargava Reddy, 2024). Applying RL in cyber deception makes the decoy system more efficient in

distracting the attackers’ attention away from the real target. Thus, it extends the duration of

interaction between the attacker and the target environment to collect more information about the

attacker's behavior and tactics. Additionally, it minimizes the human intervention involved in

recognizing potential intruders (Veluchamy & Kathavarayan, 2021).

TangleNet learns from past interactions with the attackers, adjusts its reaction according to

the attack behavior, and optimizes its response over time. TangleNet can also collect information

regarding the attacks' behavior like the used commands, and the time to compromise a server or to

exploit a vulnerability. This information is invaluable for the defenders to enhance the security

measures implemented in the operational environment (Javadpour et al., 2024). Unlike the existing

cyberdeception solutions designed for only a specific server such as SSH, HTTP, etc, TangleNet is

a heterogeneous cyberdeception system that consists of many decoy servers: SSH, FTP, SMTP, and

a database server. More importantly, TangleNet goes a step forward compared to conventional

honeypots because it is dynamic, particularly it adjusts its reaction to the attacker's action, unlike

conventional honeypots which react in the same way independently of the attacker's behavior

or action.

The paper is organized as follows: Section 2 presents a background on cyber deception,

honeypots, Reinforcement Learning, and the OODA loop framework. Section 3 provides the

related work that has been done to advance the field of cyber deception. Section 4 illustrates the

design of the proposed Reinforcement Learning model. Section 5 demonstrates the experimentation

environment setup and presents the obtained results. Section 6 concludes the paper and presents the

future work.

2. Background

2.1. Cyber deception

Deception techniques have been employed for various purposes including military,

espionage, and political propaganda. Deceptive tactics make attackers doubt their skills and

judgment, unlike conventional defenses, which are frequently predictable and simple to overcome.

In modern warfare, cyber deception is used for defensive purposes to detect and respond to cyber-

attacks or for offensive purposes to gather intelligence (Soule et al., 2016). Cyber deception

systems run on top of the OODA Loop framework (Priambodo et al., 2022). This loop consists of

four phases: observe, orient, decide, and act as presented. It refers to an iterative decision-making

process through which entities observe evolving information, contextualize it, decide on the next

steps, implement an action plan, and adopt a strategy based on the observations and results obtained.

However, the effectiveness of cyber deception solutions depends on their ability to create

realistic scenarios and maintain trickery over a long period (Brasoveanu, Moodie & Agrawal,

2020). Deceptive systems are designed to imitate real targets, such as servers, to allow defenders to

capture, record, and observe the behavior of the attackers without their knowledge (Javadpour et

al., 2024).

http://www.rria.ici.ro/

Romanian Journal of Information Technology and Automatic Control, Vol. 35, No. 1, 23-36, 2025 25

 http://www.rria.ici.ro

Cyber deception solutions entail deploying a honeypot which is a fake system or network

aimed at drawing the attention and lure off attackers right away from the operational computing

environment (Reynolds & Green, 2023). The types of data collected by honeypots include

instructive and statistical information such as the top shell commands executed, tools downloaded,

malware signatures, the operating system commonly used by attackers, the commonly used

credentials, the classification of attacks by country, a list of attacker source IP addresses and

associated ASNs (Autonomous Systems numbers), and so on. This information is analyzed later to

detect the attack patterns and enhance the defense measures in the operational environment.

2.2. Reinforcement learning

Reinforcement learning (RL) is a machine learning technique that enables an agent to learn

in an interactive environment by trial and error using feedback from its actions and experiences

(Kadam & Ahmed, 2024). Further, RL finds its application in gameplay and development to create

smarter NPCs that can learn new things from the field. Applying the concept in cyber deception

makes attacks hard, complex, and lengthy tasks for attackers (Javadpour et al., 2024). Researchers

have applied Reinforcement Learning in creating smart agents for use in cybersecurity aiming to

detect and combat cyber security threats. For instance, the attackers will use one or many strategies

to bypass the discovery and detection controls, so modern RL algorithms can adapt their reaction

according to the dynamics of the attacker's actions and by considering the known patterns of

attacks (Kadam & Ahmed, 2024).

Figure 1 shows the components of an RL model and their interactions. The design of an RL

model involves defining the agent's actions, rewards, and states, in addition to selecting the

appropriate algorithm to train the agent.

 Figure 1. Design Components

The environment: it describes where the agent is expected to run. It consists of the state

space, the action space, and the reward function. The tasks that the agent can carry out and how

they will be paid must be specified in a way that motivates the agent to behave desirably and

correctly and this is according to the objectives of the RL model:

• State: the observation that the agent makes on the environment; it could be a command

entered by the attacker.

• Action: the agent acts on the environment according to the observation, for example allow,

block, or substitute the command entered by the attacker.

• Reward: the feedback that the agent gets when it acts on the environment. If the action is

positive, it gets a reward, otherwise, it gets a penalty.

• Episode: a single run or trial of the agent interacting with the environment to learn and

improve its decision-making policy.

• The agent: The agent is the learner. It must find out autonomously how to act/react to the

environment. The aim is to choose the most accurate actions that lead to a high cumulative

reward.

• Algorithms: Agents are trained to learn how to behave depending on the rewards and

punishments from their environment by using Reinforcement Learning (RL) algorithms.

There are various RL algorithms such as Actor-Critical, deep Q-networks (DQN),

Proximal Policy Optimization (PPO), Q-Learning, and SARSA. Q-learning algorithm is

the most suitable for TangleNet. It is an off-policy Reinforcement Learning algorithm that

immediately selects the best action, given a current state, out of all the possible actions.

26 Revista Română de Informatică și Automatică, Vol. 35, nr. 1, 23-36, 2025

http://www.rria.ici.ro

The purpose is to identify the best series of activities based on the current state. To achieve

this, the model develops a set of rules to reach the highest reward. The algorithm runs

based on a matrix (state, action, reward) called Q-table. The Q-table describes for each pair

of a state and an action (s, a) the reward associated with it. After that the agent takes either

the action that has the maximum value of reward or a random action based on the ε-greedy

method (ε, ε), and then it appends the new pair (action, state) to the Q-Table (Chadi &

Mousannif, 2023).

3. Literature review

In this section, several studies have been reviewed. All the studies suggest adaptable cyber

deception systems that utilize different algorithms with different focuses and objectives. Then a

comparison of the proposed approaches has been conducted based on the design approach, type of

system (specific or generic), level of interaction, level of deceptiveness, and whether it depends

on datasets.

Many of the proposed cyber deception techniques are based on generic Machine Learning

models, while few are based on RL. A cyber deception tool can be either heterogeneous, and works

with various protocols and systems, or homogenous and customized to a single type of protocol,

such as SSH or Web (HTTP). Regarding the level of interaction, cyberdeception systems are

divided into three categories: high, medium, and low interaction. Conventional cyber deception

techniques usually react to the attacker's behavior following a predefined and limited set of actions

depending on the attack scenario and the attacker usually detects the decoy system due to its

fingerprint as discussed above. For RL systems, the reaction of the RL agent is less likely to be

expected by the attacker, because it depends on some observation done by the RL agent that leads

to a dynamic state of the environment which results in a high interaction cyber deception system

due to the action space of the RL agent. Furthermore, the level of deception exponentially rises

when techniques like RL are used. Ghourabi, Abbes & Bouhoula (2011) proposed using honeypots

to detect and study attacks against Web services. In the proposed solution, they deploy a honeypot

as a web service application. This decoy system captures all request messages and analyzes them

using ML techniques to detect the attacks.

Pauna & Patriciu (2014) developed an artificially intelligent model based on case-based

reasoning (CBR). Their adaptive model was inspired by cognitive science and aimed to mimic

human behavior. Case-based reasoning activities are sometimes divided into two categories:

interpretation and problem-solving. Hence, it classifies or defines the current situation using

precedents from earlier cases.

Dowling, Schukat & Barrett (2019) proposed an adaptive honeypot that learns the best

answers to attack commands and overcomes the honeypot detection techniques incorporated into

malware deployments. The suggested honeypot employs a state action space formalism to reward

the learner for extending attack interactions, and it learns from repeated and automated attack or

compromise attempts. They have shown that when compared to the normal high interaction

honeypot, the adaptive honeypot captured a larger dataset with four times more attack command

transitions after the initial learning phase. Torino (2021) sought to address the limitation of the

Cowrie SSH honeypot (Cabral et al., 2019) by developing the Cannypot, a configurable honeypot

that employs RL algorithms. Q-learning algorithm is embodied in the structure of Cannypot. The

model is based on a database that stores the results of commands as a dictionary. A back-end

service supplies a list of possible outputs to be appended to the dictionary and a front-end maintains

the list of unidentified commands. The greatest disadvantage of this model is the amount of storage

space required for the dictionary. Navarro (2021) has introduced a honeypot ‘Python RASSH’

which clones Kippo, a non-adaptive honeypot defeated by Cowrie (Medium-interaction honeypot).

It is based on the SARSA algorithm, which is an e-greedy strategy and there is a new action called

‘delay’ in the algorithm which postpones the execution of the orders entered by the attacker. Also,

unlike some other frameworks, it changes the action of a “substitute command” with the concept of

a “fake command” which gives the attacker a wrong output.

http://www.rria.ici.ro/

Romanian Journal of Information Technology and Automatic Control, Vol. 35, No. 1, 23-36, 2025 27

 http://www.rria.ici.ro

Touch & Colin (2022) proposed an adaptive self-guarded honeypot: Asgard. It employs RL

to monitor the tools and actions of the attackers and offers protection against deep compromise.

The authors then contrast Asgard to the standard SSH honeypot Cowrie. Unlike Cowrie, Asgard

could collect better quality information about the attacker's behavior at the time it could bypass

detection techniques. One more advantage of Asgard compared to Cowrie is the fact that it could

defend the system for as long as it could either through blocking or shading malicious programs or

commands. Kunz et al., (2023) proposed MARLon: Multi-Agent Training ON CyberBattleSim.

CyberBattale is a Python OpenAI Gym environment used to model network security issues (Walter,

Ferguson-Walter & Ridle, 2021). The environment created by CyberBattleSim is a network of

servers connected by several network connection protocols. The multi-agents model consists of two

agents, a defender, and an attacker. They are trained to operate in the network environment using

the proximal policy optimization PPO algorithm at the same time. The authors describe the changes

and report on the results obtained when training the defending agents, either isolated or jointly with

the attacker agents in the same environment.

In this research, the TangleNet framework is proposed. It uses Reinforcement Learning and

advanced deception techniques to simulate a realistic multi-server network environment,

dynamically engaging attackers to extend interactions, improve monitoring, and reduce human

intervention while offering deep insights into the attacker’s behavior. In TangleNet, the RL agent

leverages the Q-learning algorithm to make realistic decisions: Allow, Block, or Substitute, based

on the network's current state, causing transitions to new states for dynamic cyber security. Table 1

summarizes and compares the characteristics of the existing cyber deception models with

TangleNet.

Table 1. Gap Analysis

 Ref. Approach
Specific or

generic

Level of

interaction

Level of

Deceptiveness
Dataset Algorithm

Ghourabi, Abbes

& Bouhoula

(2011)

ML Web M M ✓
SVlvI,

Apriori

Pauna &

Patriciu (2014)
AI SSH M M ✓ -

Dowling,

Schukat &

Barrett (2019)

RL SSH H H

-
SARSA

Torino (2021) RL SSH H H ✓ Q-Learning

Navarro (2021) RL SSH H H

-
SARSA

Touch & Colin,

2022
RL SSH H H

-
Q-Learning

Kunz et al.,

(2023)
RL

SSH, FTP,

Mail,

Database

server

H H

-
PPO

TangleNet RL

SSH, FTP,

Mail,

Database

server

H H

-
Q-Learning

4. Proposed solution: TangleNet

4.1. Overview

TangleNet integrates the essence of deception in the cybersecurity field with the power of

Reinforcement Learning to create a highly effective and efficient deception strategy that provides

the blue team with visibility into the attacker's core techniques. The objective of TangleNet is to

prolong and extend the attacker’s interaction with the cyberdeception system by responding

28 Revista Română de Informatică și Automatică, Vol. 35, nr. 1, 23-36, 2025

http://www.rria.ici.ro

dynamically, thereby elevating the level of deception, ensuring comprehensive monitoring, and

minimizing human intervention.

In TangleNet, the considered network topology closely simulates real-life network

environments. As illustrated in Figure 2, the topology comprises four servers: SSH server, FTP

server, Mail server, and Database server. This will make TangleNet heterogenous, unlike

conventional cyberdeception where only one server behavior is implemented. These servers are

typical of the services that can be found in most networks. These types of servers are intended to

develop an ideal condition that exhibits a variety of network behaviors and weaknesses. When an

attacker tries to communicate with such servers using commands, the cyber deception starts by

intercepting and analyzing. It then decides its action, whether to allow the attacker to continue

attacking the current server, search for another server, or move to attack another server remotely.

The learning process of the RL agent starts with the perception of the environment in this case the

attacker’s commands. It is out of this observation that the agent can learn and come up with

relevant decisions about the course of action to undertake about a certain command.

Figure 2. Network topology

4.2. TangleNet design and implementation

The design phase is crucial in the RL process. It comprises setting up the environment,

defining the agent's actions and rewards, and selecting the most effective algorithm to train the

agent. In this section, different RL model components are presented followed by the

implementation and evaluation of TangleNet.

4.2.1. Environment

The CyberBattle platform (Walter, Ferguson-Walter & Ridle, 2021) and Mininet library

Mininet/mininet 2.3.0 (2021) are used to create a realistic network environment. CyberBattle is a

platform designed by Microsoft to simulate cyber-attack scenarios. Mininet is a network simulator

that allows the creation of virtual network topologies. Mininet is useful in designing the network

structure, configuring servers, and simulating the network interactions. This gives control over the

network environment and facilitates the evaluation of the performance of TangleNet by mimicking

real-life network scenarios. Combining the capabilities of the CyberBattle platform and the Mininet

library helps obtain a robust and realistic network simulation environment.

In the simulated environment, four servers are considered: SSH, FTP, Mail, and Database

servers, as illustrated in Figure 2. Each server was assigned specific functionalities and

vulnerabilities to replicate real-world network scenarios. Each server is designed to have a number

of vulnerabilities named VulCounterX, X denotes the servers: SSH,FTP,Mail,DB. A flag is

assigned to each vulnerability, once it is exploited, this flag is checked by the RL agent, and

VulCounterX is decremented.

http://www.rria.ici.ro/

Romanian Journal of Information Technology and Automatic Control, Vol. 35, No. 1, 23-36, 2025 29

 http://www.rria.ici.ro

The attacker's behavior consists of executing commands (shell commands: ls, cat, wget, pwd,

ssh, nmap, dd, chmod or some shell scripts) on the different servers present in the network scenario.

The attacker executes the command to achieve one of the following goals: (1) exploiting a

vulnerability in the current server where the attacker resides, (2) exploiting a vulnerability in a

remote server from the current server (from the location of the attacker), (3) discovering a new

server, or (4) preparing for the exploitation phase in the target server.

Consequently, in TangleNet, the attacker enters commands that can be mapped to one of the

following categories:

• Exploitation commands (denoted E): any command used to execute a malicious code

in the target server (local or remote);

• Discovery commands (denoted D): any command used to discover the network,

particularly the servers in the network;

• Other commands (denoted O): any other commands that cannot be mapped to E or D.

It comprises all other commands used to prepare the exploitation of the vulnerabilities.

TangleNet is preloaded with a huge set of commands categorized into E, D, and O. This

categorization is based on many threat intelligence sources and the analysis of different commands

that may be used by the attacker on different servers. Each time the attacker executes a command,

TangleNet first categorizes the command as E, D, or O. Particularly, a similarity score between the

command and the set of preloaded commands is calculated to decide on its category.

In TangleNet the states are defined based on the category of commands entered by the

attacker in addition to information about the target server and the attacker's location. Particularly, a

state S is defined as follows:

 S:[Category of the command, environmental information]

Where the Category of command can be E, D, or O and the environmental information comprises:

- The current server (location of the attacker)

- The target server (target of the attacker)

- The number of vulnerabilities not yet exploited VulCounterX in the target server X.

An example of State is presented below:

Where:

- E: the attacker entered an exploitation command

- SQL Server: The current location of the attacker

- SSH server is the target server

- 4 is the number of vulnerabilities not yet exploited on the SSH Server.

4.2.2. RL agent

In TangleNet, the RL agent will respond realistically by following a clear decision-making

process. It uses the Q-learning algorithm, which begins when the agent receives a state from the

environment. The states in TangleNet represent the current configuration and status of the network

as explained in the previous section. Once the RL agent observes a state Si, it must decide on one of

the three actions: Allow, Block, or substitute, which makes the system transit to a new State Sj

(Touch & Colin, 2022). The actions of the RL agent are as follows:

- Allow the command to be executed to exploit the vulnerability in the target server. An

example of a transition from state Si (equation 1) to a potential state Sj upon the execution of

an Allow:

30 Revista Română de Informatică și Automatică, Vol. 35, nr. 1, 23-36, 2025

http://www.rria.ici.ro

- Block the command to give the attacker the allusion that it is a real environment and avoid the

detection of the decoy servers. An example of a transition from state Si (equation 1) to a

potential state Sk upon the execution of a Block:

- Substitute: to make the attacker change its attack strategy by entering new commands,

Consequently, the interaction period with the attacker will be extended and the RL agent will

be able to collect more information about it. An example of a transition from state Si

(equation 1) to a potential state Sl upon the execution of a Substitute:

4.2.3. Learning algorithm

Q-learning is a Reinforcement Learning technique that enables the agent to learn the optimal

action selection based on the current state (Chadi & Mousannif, 2023). In the implementation of

TangleNet the Q-learning algorithm is used to implement the behavior of the RL agent. Initially,

the Q-table is empty, as the learning process begins, the RL agent will store a pair of (state, action)

associated with the maximum reward obtained over time.

The number of states depends on the type of the commands (E, D, or O), the current server,

the target server, and the number of vulnerabilities in each server as explained above. The RL agent

can take one of three actions {Allow, Block, Substitute}. During each learning cycle, the agent

stores in the Q-Table a pair consisting of an action and a state, along with the accumulated reward

obtained from performing that specific action in that state.

A description of the procedural form of the algorithm is provided in Algorithm 1.

4.2.4. Reward function

The reward system encourages the agent to trick the attacker into staying in the network and

prolonging the attack. The reward increases whenever the agent successfully deceives the attacker.

http://www.rria.ici.ro/

Romanian Journal of Information Technology and Automatic Control, Vol. 35, No. 1, 23-36, 2025 31

 http://www.rria.ici.ro

The model’s reward function is based on the states and the actions the RL agent can take in the

environment. The agent will receive a reward when it performs the correct action in a specific state.

Initially, the agent may not receive a high reward as it only starts the learning process. Over

time, the agent will learn to take the correct action in each state and will get rewarded consistently.

It is worth recalling that the main objective of TangleNet is to prolong the existence of the

attacker in the network and trick him into executing more commands on the target server.

Consequently, TangleNet will be highly interactive and can learn more about the attack patterns

executed to compromise the servers in the network. The reward function must consolidate

TangleNet to achieve this goal. Hence the RL must select the adequate action each time the

attacker executes a command on the target environment. The proper action must trick the attacker

into frequently substituting the command mainly if it is in the exploitation and discovery phases

(commands type E and D) before allowing or blocking it. Hence, the reward function R at a time t

is given as follows:

5. Experimentation

5.1. Experimentation setup

The network configuration consists of four servers: FTP, SSH, MySQL, and SMTP. They

depict typical services that exist in the networks. A firewall is used to protect the network from

unauthorized access as depicted in Figure 2. VLAN is enabled on the firewall with the VLAN

mode specified as dot1q. In this topology, VLANs are configured on the firewall interfaces with

VLAN tags of 10,20,30 & 40. Moreover, the IP forwarding is configured on the firewall to let

forward packets to any of the interfaces. On each server, there is a setting of the default gateway,

and traffic is directed through the VLAN interfaces of the firewall. Moreover, the system of NAT

(Network Address Translation) rules is integrated into the firewall to perform the masquerading on

the external interface. This makes it possible for the firewall to mask the internal IP addresses to be

forwarded to the external network.

5.2. Results

TangleNet is designed in a way that would effectively extend attacker’s experience in the

network and capture crucial Tactics, Techniques, and Procedures (TTPs). The RL agent is designed

to generate deceptive responses that mimic real servers' behavior, confounding attackers and

prolonging their interaction. Two metrics are considered to assess the effectiveness of the RL

agent: the deceptiveness level and the interaction time. The level of deceptiveness is the number of

commands executed by the attacker. A higher number of executed commands indicates a higher

level of deception in the environment. This metric serves as a quantifiable measure of the RL

agent's ability to prolong the attack. The interaction time is the average duration of interaction

between the attacker and the RL agent either by completing all the episodes or compromising the

target server or the whole network. This metric reflects the agent's efficacy in making timely

decisions and executing actions properly.

The number of commands entered by the attacker and the duration of the attack are

illustrated as a function of the number of episodes in Figures 3a and 3b respectively. Figure 3

shows a positive correlation between the attack duration in minutes and the number of commands

entered by the attacker. Figure 3a shows that the average duration required to attack a server is

about 21 minutes between the first and the fifth episode, then decreases to around 16 minutes

between episodes 6-8 before increasing exponentially starting from episode 9. Similarly, Figure 3b

shows that the initial number of commands is around 39 between the first and the fifth episodes,

32 Revista Română de Informatică și Automatică, Vol. 35, nr. 1, 23-36, 2025

http://www.rria.ici.ro

then decreases to around 31 commands between episodes 6-8 before increasing exponentially

starting from episode 9. The decrease in the duration and the number of commands between

episodes 6 and 8 can be explained by the fact that the RL is just getting started with the learning

process, the Q-table is initially empty so it needs a certain time to initialize it with adequate pair of

(state, action). Overall, the attack duration and the number of commands reflect the high

deceptiveness level of TangleNet: the higher the duration of the attack, the higher the number of

commands is, consequently the deceptiveness.

(a) The duration of the attack for each trial

(b) The number of commands entered for each

episode

Figure 3. Correlation between the attack duration and the number of executed commands

Further experiments are conducted to investigate the performance of TangleNet. Particularly,

the deceptiveness of TagleNet is measured using the average amount of time needed for the

attacker to compromise a server or the entire network.

Table 2 presents the performance of the TangleNet on each server separately. The average

duration of the attack and the average number of commands are calculated for each server.

Table 2. TangleNet attack trial statistics per server

Server

Average Attack

Duration

Average # of Executed

Commands

SSH 28min 43

FTP 19min 36

SMTP 35 min 26

MySQL 28min 51

As shown in Table 2, the attacker was able to compromise the SSH server after an average of

28 minutes by executing 43 commands. For the FTP server, the attack duration is 19 minutes and

the attacker executed 36 commands. Table 2 points out the RL agent succeeds to extend the attack

duration and this is due to the substitute action performed as reaction to the commands executed by

the attacker. The extended attack duration allows the attacker to explore more attack patterns and

execute more commands.

Table 3 provides the results of these experiments used to deeply evaluate the deceptiveness

of the TangleNet agent as a function of the initial location of the attacker. It shows the following

information:

• The initial location of the attacker before pivoting in the network;

• Average Attack Duration: This column shows the average attack duration in minutes

for each trial;

• Number of Commands: it represents the number of commands executed by the attacker;

• Compromise the whole network: it indicates whether the attacker succeeds in

compromising the entire network.

http://www.rria.ici.ro/

Romanian Journal of Information Technology and Automatic Control, Vol. 35, No. 1, 23-36, 2025 33

 http://www.rria.ici.ro

Table 3. TangleNet attack trial statistics for the whole network

As shown in Table 3, the attacker was able to compromise the network from the SSH server

and the MySQL server as initial locations before pivoting to other servers. It needed an average of

30 minutes to execute 50 commands which was the required number of commands needed to

compromise the network. Similarly, it needed around 60 commands to compromise the whole

network if it started from MySQL server.

On the other hand, Table 3 shows that the attacker failed to compromise the network when it

started from server FTP and SMTP. The number of trial 9 was not sufficient for the RL agent to

extend the attack until the whole network was compromised, the duration of 20 minutes was

insufficient to compromise the whole network by referring to Table 2, the duration of 19 minutes

was required to compromise only the FTP server. More time would be given to the RL agent to

learn how to prolong the attack duration.

6. Conclusion and future work

TangleNet offers an innovative solution by integrating deception techniques and

Reinforcement Learning to effectively extend the attacker’s engagement, capture crucial TTPs, and

enable proactive defense strategies. TangleNet reduces human interference, automates threat

intelligence gathering, and improves overall security posture. It generates deceptive responses that

mimic genuine server behavior, confounding attackers and prolonging their interaction. The

experimentation results show a positive correlation between the level of deception and the number

of commands executed by the attacker which effectively increases the confusion. The TangleNet

interactiveness is measured by the average time it takes an attacker to compromise a server or an

entire network. Longer session time indicates a higher level of interaction, resulting in longer attack

time. This extended attack window allows for more comprehensive data collection of changing

attack patterns.

Although TangleNet improves the current application of RL in cyber deception, it does not

consider the previous or following situations, because a single command may not lead to a

malicious situation, but a series of commands may do. Further research efforts should explore

potential approaches to achieve state correlation in the decision-making process.

As future work, it is expected to use RL to implement the attacker’s behavior. Furthermore,

more experiments would be conducted to compare TangleNet to other cyberdeception tools.

Attacker

Initial

Location

Attacker Trial

(# of attempts)

Average

Attack

Duration

#of

Command

Executed

Compromise the

whole Network

SSH Server

1-5 25min 45 x

6-8 18min 32 x

9 30min 50 ✓

FTP Server

1-5 22min 38 x

6-8 15 min 28 x

9 20min 42 x

SMTP

Server

1-5 10 min 20 x

6-8 12 min 24 x

9 15min 32 x

MySQL

Server

1-5 28min 52 x

6-8 20min 40 x

9 35min 60 ✓

34 Revista Română de Informatică și Automatică, Vol. 35, nr. 1, 23-36, 2025

http://www.rria.ici.ro

Acknowledgment

This research was supported by the University of Jeddah, Saudi Arabia, grant number

UJ-23-DR-21.

REFERENCES

Biplob, M. B., Marma, S. M. & Akther, M. (2024) Securing Tomorrow’s Digital World: Key

Trends in Cyber security for 2024. Preprints. https://doi.org/10.20944/preprints202409.0576.v1.

Brasoveanu, A., Moodie, M. & Agrawal, R. (2018) Science of Cyber Deception: Experimental

Design and Implementation. CEUR Workshop Proceedings, https://www.osti.gov/biblio/1648653.

Cabral, W., Valli, C., Sikos, L. & Wakeling S. (2019) Review and Analysis of Cowrie Artefacts

and Their Potential to be Used Deceptively. In 2019 International Conference on Computational

Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, 2019. pp. 166-171. doi:

10.1109/CSCI49370.2019.00035.

Chadi, M. A. & Mousannif, H. (2023) Understanding Reinforcement Learning Algorithms: The

Progress from Basic Q-Learning to Proximal Policy Optimization. To be published in Machine

Learning. [Preprint] https://doi.org/10.48550/arXiv.2304.00026 [Accessed 31st March 2023].

Dowling, S., Schukat, M. & Barrett, E. (2019) Using reinforcement learning to conceal honeypot

functionality. In: Brefeld, U. et al., (eds.) Machine Learning and Knowledge Discovery in

Databases (ECML PKDD 2018). Lecture Notes in Computer Science (Including Subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 11053, 341–355.

https://doi.org/10.1007/978-3-030-10997-4_21.

Ghourabi, A., Abbes, T. & Bouhoula, A. (2011) Design and implementation of Web service

honeypot. SoftCOM 2011. 19th International Conference on Software, Telecommunications and

Computer Networks, Split, Croatia, 2011. pp. 1–5.

Javadpour, A., Ja'fari, F., Taleb, T., Shojafar, M. & Benzaïd, C. (2024) A comprehensive survey on

cyber deception techniques to improve honeypot performance. Computers & Security. 140(4),

103792. doi: 10.1016/j.cose.2024.103792.

Kadam, S. J. & Ahmed, H. M. (2024) Ransomware Detection and Prevention Using Machine

Learning and Honeypots: A Short Review. Iraqi Journal of Computers, Communications, Control

and Systems Engineering. 24(2), 29-40. doi:10.33103/uot.ijccce.24.2.3.

Kunz, T., Fisher, C., Novara-Gsell, J., Nguyen, C. & Li, L. (2023) A Multiagent Cyberbattlesim for

RL Cyber Operation Agents. To be published in Cryptography and Security. [Preprint]

https://arxiv.org/ftp/arxiv/papers/2304/2304.11052.pdf [Accessed 3th April 2023].

Maddireddy Bharat Reddy & Maddireddy, Bhargava Reddy (2024) The Role of Reinforcement

Learning in Dynamic Cyber Defense Strategies. International Journal of Advanced Engineering

Technologies and Innovations. 1(2), 267-292. https://ijaeti.com/index.php/Journal/article/view/306.

Mininet/minet 2.3.0 (2021). Emulator for rapid prototyping of software defined networks. GitHub.

https://github.com/mininet/mininet [Accessed 11th June 2024].

Navarro, F. O. (2021) Analysis of reinforcement learning techniques applied to honeypot systems.

Master’s Thesis. Universitat Oberta de Catalunya. http://hdl.handle.net/10609/126948.

Pauna, A. & Patriciu, V.V. (2014) Self-Adaptive SSH Honeypot Model Capable of Reasoning.

Academia. https://www.academia.edu/5538993/ Self_adaptive_SSH_Honeypot_Model_

Capable_of_Reasoning [Accessed 09th July 2023].

http://www.rria.ici.ro/
https://doi.org/10.20944/preprints202409.0576.v1
https://doi.org/10.48550/arXiv.2304.00026
https://doi.org/10.1007/978-3-030-10997-4_21
https://doi.org/10.33103/uot.ijccce.24.2.3
https://arxiv.org/ftp/arxiv/papers/2304/2304.11052.pdf
https://github.com/mininet/mininet
http://hdl.handle.net/10609/126948

Romanian Journal of Information Technology and Automatic Control, Vol. 35, No. 1, 23-36, 2025 35

 http://www.rria.ici.ro

Priambodo, D. F., Pramadi, Y. R., Briliyant, O. C., Hasbi, M. & Yahya, M. A. (2022) Observe-

Orient-Decide-Act (OODA) for Cyber Security Education. International Journal of Advanced

Computer Science and Applications. 13(12), 246-255. doi:10.14569/IJACSA.2022.0131031.

Reynolds, C. & Green, A. (2023) Analysis of Honeypots in detecting Tactics, Techniques, and

Procedure (TTP) changes in Threat Actors based on Source IP Address. The 27th Annual

Symposium of Student Scholars - 2023 DigitalCommons@Kennesaw State University.

Soule, N., Pal, P., Clark, S., Krisler, B. & Macera, A. (2016) Enabling defensive deception in

distributed system environments. In Proceedings of the 2016 Resilience Week (RWS), Chicago, IL,

USA, 2016. pp. 73-76. doi:10.1109/RWEEK.2016.7573310.

Torino, P. D. I. (2021) Cannypot: A reinforcement learning-based adaptive SSH honeypot.

Politecnico di Torino, Corso di laurea magistrale. Ingegneria Informatica (Computer Engineering),

2021.

Touch, S. & Colin, J. (2021) Asguard: Adaptive Self-guarded Honeypot. In Proceedings of the

17th International Conference on Web Information Systems and Technologies (WEBIST 2021).

Volume 1: DMMLACS, pp. 565-574. doi:10.5220/0010719100003058.

Touch, S. & Colin, J. N. (2022) A Comparison of an Adaptive Self-Guarded Honeypot with

Conventional Honeypots. Applied Sciences. 12(10), 5224. doi:10.3390/app12105224.

Veluchamy, S. & Kathavarayan, R. S. (2021) Deep reinforcement learning for building honeypots

against runtime DoS attack. International Journal of Intelligent Systems. 37(7), 3981-4007.

doi:10.1002/int.22708.

Walter, E., Ferguson-Walter, K. J. & Ridley, A. (2021) Incorporating Deception into

CyberBattleSim for Autonomous Defense. To be published in Cryptography and Security.

[Preprint] https://doi.org/10.48550/arXiv.2108.13980. [Accessed 31st August 2021].

Wang, C. & Lu, Z. (2018) Cyber Deception: Overview and the Road Ahead. IEEE Security &

Privacy, https://doi.org/10.1109/MSP.2018.1870866.

* * *

Tahani GAZDAR received the Engineering, M.Sc., and Ph.D. degrees in computer science

from the National School of Computer Sciences, University of Manouba, Tunisia, in 2009, 2010,

and 2015, respectively. She is an Associate Professor at the College of Computer Science and

Engineering, University of Jeddah, Saudi Arabia. Her research interests include Applying Machine

Learning in Cybersecurity, Intrusion detection systems, Reinforcement Learning, and

Penetration Testing.

* * *

Lara MURAD is a graduate student at the College of Computer Science and Engineering,

Cybersecurity Department, University of Jeddah, Jeddah, Saudi Arabia.

* * *

Safana AL-JAHDALI is a graduate student at the College of Computer Science and

Engineering, Cybersecurity Department, University of Jeddah, Jeddah, Saudi Arabia.

https://doi.org/10.48550/arXiv.2108.13980
https://doi.org/10.1109/MSP.2018.1870866

36 Revista Română de Informatică și Automatică, Vol. 35, nr. 1, 23-36, 2025

http://www.rria.ici.ro

* * *

Fai ZWAWI is a graduate student at the College of Computer Science and Engineering,

Cybersecurity Department, University of Jeddah, Jeddah, Saudi Arabia.

* * *

Reman MANDILI is a graduate student at the College of Computer Science and

Engineering, Cybersecurity Department, University of Jeddah, Jeddah, Saudi Arabia.

http://www.rria.ici.ro/

This is an open access article distributed under the terms and conditions of the
Creative Commons Attribution-NonCommercial 4.0 International License.

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

