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Abstract: Detecting network attacks is becoming a challenging task given that they are getting more 

complex. Almost all modern security systems can identify attacks in the early and final, but not in the middle 

stages. This limitation is caused by the fact that the detection of the nature of an attacker requires a deep 

investigation of the attack pattern. It means that the detection of the attack after its occurrence is useless since 

the harm has already been inflicted. Early signs can give quite a lot of false positive results. Consequently, 

cyber deception strategies are applied to fill this gap and improve the blue team’s knowledge of the attackers’ 

fundamental strategy. This research introduces an integrated cyber deception system called TangleNet that 

incorporates reinforcement learning to build a research honeynet that simulates real servers and attacker 

activity. The outcome of the experimentation conducted using Microsoft’s CyberBattle platform and the 

Mininet library shows the level of deception of the cyber deception model is correlated to the number of 

commands executed by the attacker. This enhanced effectiveness extends the interactiveness time and allows 

for the tracking of potentially hostile entities with little dependency on human intervention. 
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1. Introduction  

The security community continues to face threats from the growing frequency of 

sophisticated cyberattacks and subsequent disruption to the systems. Current security solutions 

frequently focus their detection on recognizing threats in discrete incidents, which is insufficient 

for identifying complex multi-stage attacks. The challenge of recognizing cyber-attacks has taken a 

new shift because of several factors. Specifically, cyber attackers are using new trends, which are 

multi-stage and composite attacks that cannot be captured by conventional detection solutions like 

firewalls, intrusion detection systems, or even traditional honeypots. Moreover, most of the 

attackers use stealth techniques such as encryption, disguising as other processes, or polymorphism 

with which to evade detection by the security systems. The computing environment also becomes 

heterogeneous due to which they are more complex in nature. Therefore, it is challenging to 

monitor their presence and prevent unauthorized access (Biplob, Marma & Akther, 2024). Nearly 

all security solutions available in the market can detect attacks in their initiation phase as well as 

final stages, but none address the middle stages. This limitation is well justified because identifying 

an attacker’s primary methodologies demands further research. Finding that an attack has occurred 

once it has happened is of little use since the damage has already been done. Moreover, the issue of 

early detection can be very deceptive because the system often produces a high false positive and 

may change based on the network and environment. The cyber deception solutions are used by blue 

teams to bridge this gap and expand their perspective on attack patterns and techniques. Cyber-

deception aims to provide fake and misleading information and create a kind of allusion to the 

attacker about the target system (Javadpour et al., 2024). The blue team deploys decoy systems to 

attract attackers and interact with them to gather knowledge about their tactics, techniques, and 

procedures (TTPs). Cyber deception techniques are efficient in detecting zero-day attacks with a 

nearly zero false positive rate because only attackers interact with a decoy system (Javadpour et al., 

2024). Although conventional honeypots provide a certain level of defense, the attackers use 

sophisticated methods and techniques and this makes these simple decoy systems lose their 

effectiveness. A major drawback of the conventional decoy systems is the fact that the attackers 

can easily notice them due to their fingerprinting which depends on the specific and predictable 
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behavior of the decoy systems. Furthermore, most conventional honeypots are developed to interact 

with known attack scenarios, which limits their applicability. For example, many decoy systems 

only address the SSH behavioral scenarios since they can easily mimic the attack and since it is 

among popular targets. However, this somehow dismisses other vulnerabilities in the network 

protocols such as FTP and HTTP which are also commonly used. Additionally, most existing 

solutions rely on datasets and this decreases their interactivity and deceptiveness. Therefore, a new 

conceptual model for the design of such models is imperative. This paper presents TangleNet, a 

new research cyberdeception system that utilizes Reinforcement Learning (RL) to overcome 

the aforementioned limitations. TangleNet aims to provide an active, heterogeneous, highly 

interactive cyber deception system by merging the concept of deception with the adaptability of 

Reinforcement Learning techniques. Reinforcement learning (RL) allows an agent to learn through 

trial-and-error feedback in an interactive environment (Maddireddy Bharat Reddy & Maddireddy, 

Bhargava Reddy, 2024). Applying RL in cyber deception makes the decoy system more efficient in 

distracting the attackers’ attention away from the real target.  Thus, it extends the duration of 

interaction between the attacker and the target environment to collect more information about the 

attacker's behavior and tactics. Additionally, it minimizes the human intervention involved in 

recognizing potential intruders (Veluchamy & Kathavarayan, 2021).  

TangleNet learns from past interactions with the attackers, adjusts its reaction according to 

the attack behavior, and optimizes its response over time. TangleNet can also collect information 

regarding the attacks' behavior like the used commands, and the time to compromise a server or to 

exploit a vulnerability. This information is invaluable for the defenders to enhance the security 

measures implemented in the operational environment (Javadpour et al., 2024). Unlike the existing 

cyberdeception solutions designed for only a specific server such as SSH, HTTP, etc, TangleNet is 

a heterogeneous cyberdeception system that consists of many decoy servers: SSH, FTP, SMTP, and 

a database server. More importantly, TangleNet goes a step forward compared to conventional 

honeypots because it is dynamic, particularly it adjusts its reaction to the attacker's action, unlike 

conventional honeypots which react in the same way independently of the attacker's behavior  

or action. 

The paper is organized as follows: Section 2 presents a background on cyber deception, 

honeypots, Reinforcement Learning, and the OODA loop framework. Section 3 provides the 

related work that has been done to advance the field of cyber deception. Section 4 illustrates the 

design of the proposed Reinforcement Learning model. Section 5 demonstrates the experimentation 

environment setup and presents the obtained results. Section 6 concludes the paper and presents the 

future work.  

2. Background 

2.1. Cyber deception 

Deception techniques have been employed for various purposes including military, 

espionage, and political propaganda. Deceptive tactics make attackers doubt their skills and 

judgment, unlike conventional defenses, which are frequently predictable and simple to overcome. 

In modern warfare, cyber deception is used for defensive purposes to detect and respond to cyber-

attacks or for offensive purposes to gather intelligence (Soule et al., 2016). Cyber deception 

systems run on top of the OODA Loop framework (Priambodo et al., 2022). This loop consists of 

four phases: observe, orient, decide, and act as presented. It refers to an iterative decision-making 

process through which entities observe evolving information, contextualize it, decide on the next 

steps, implement an action plan, and adopt a strategy based on the observations and results obtained. 

However, the effectiveness of cyber deception solutions depends on their ability to create 

realistic scenarios and maintain trickery over a long period (Brasoveanu, Moodie & Agrawal, 

2020). Deceptive systems are designed to imitate real targets, such as servers, to allow defenders to 

capture, record, and observe the behavior of the attackers without their knowledge (Javadpour et 

al., 2024). 

http://www.rria.ici.ro/
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Cyber deception solutions entail deploying a honeypot which is a fake system or network 

aimed at drawing the attention and lure off attackers right away from the operational computing 

environment (Reynolds & Green, 2023). The types of data collected by honeypots include 

instructive and statistical information such as the top shell commands executed, tools downloaded, 

malware signatures, the operating system commonly used by attackers, the commonly used 

credentials, the classification of attacks by country, a list of attacker source IP addresses and 

associated ASNs (Autonomous Systems numbers), and so on. This information is analyzed later to 

detect the attack patterns and enhance the defense measures in the operational environment.   

2.2. Reinforcement learning 

Reinforcement learning (RL) is a machine learning technique that enables an agent to learn 

in an interactive environment by trial and error using feedback from its actions and experiences 

(Kadam & Ahmed, 2024). Further, RL finds its application in gameplay and development to create 

smarter NPCs that can learn new things from the field. Applying the concept in cyber deception 

makes attacks hard, complex, and lengthy tasks for attackers (Javadpour et al., 2024). Researchers 

have applied Reinforcement Learning in creating smart agents for use in cybersecurity aiming to 

detect and combat cyber security threats. For instance, the attackers will use one or many strategies 

to bypass the discovery and detection controls, so modern RL algorithms can adapt their reaction 

according to the dynamics of the attacker's actions and by considering the known patterns of 

attacks (Kadam & Ahmed, 2024). 

Figure 1 shows the components of an RL model and their interactions. The design of an RL 

model involves defining the agent's actions, rewards, and states, in addition to selecting the 

appropriate algorithm to train the agent.  

 

     Figure 1. Design Components 

The environment: it describes where the agent is expected to run. It consists of the state 

space, the action space, and the reward function. The tasks that the agent can carry out and how 

they will be paid must be specified in a way that motivates the agent to behave desirably and 

correctly and this is according to the objectives of the RL model: 

• State: the observation that the agent makes on the environment; it could be a command 

entered by the attacker. 

• Action: the agent acts on the environment according to the observation, for example allow, 

block, or substitute the command entered by the attacker. 

• Reward: the feedback that the agent gets when it acts on the environment. If the action is 

positive, it gets a reward, otherwise, it gets a penalty. 

• Episode: a single run or trial of the agent interacting with the environment to learn and 

improve its decision-making policy. 

• The agent: The agent is the learner. It must find out autonomously how to act/react to the 

environment. The aim is to choose the most accurate actions that lead to a high cumulative 

reward. 

• Algorithms: Agents are trained to learn how to behave depending on the rewards and 

punishments from their environment by using Reinforcement Learning (RL) algorithms. 

There are various RL algorithms such as Actor-Critical, deep Q-networks (DQN), 

Proximal Policy Optimization (PPO), Q-Learning, and SARSA. Q-learning algorithm is 

the most suitable for TangleNet. It is an off-policy Reinforcement Learning algorithm that 

immediately selects the best action, given a current state, out of all the possible actions. 
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The purpose is to identify the best series of activities based on the current state. To achieve 

this, the model develops a set of rules to reach the highest reward. The algorithm runs 

based on a matrix (state, action, reward) called Q-table. The Q-table describes for each pair 

of a state and an action (s, a) the reward associated with it. After that the agent takes either 

the action that has the maximum value of reward or a random action based on the ε-greedy 

method (ε, ε), and then it appends the new pair (action, state) to the Q-Table (Chadi & 

Mousannif, 2023). 

3. Literature review 

In this section, several studies have been reviewed. All the studies suggest adaptable cyber 

deception systems that utilize different algorithms with different focuses and objectives. Then a 

comparison of the proposed approaches has been conducted based on the design approach, type of 

system (specific or generic), level of interaction, level of deceptiveness, and whether it depends  

on datasets.   

Many of the proposed cyber deception techniques are based on generic Machine Learning 

models, while few are based on RL. A cyber deception tool can be either heterogeneous, and works 

with various protocols and systems, or homogenous and customized to a single type of protocol, 

such as SSH or Web (HTTP). Regarding the level of interaction, cyberdeception systems are 

divided into three categories: high, medium, and low interaction. Conventional cyber deception 

techniques usually react to the attacker's behavior following a predefined and limited set of actions 

depending on the attack scenario and the attacker usually detects the decoy system due to its 

fingerprint as discussed above. For RL systems, the reaction of the RL agent is less likely to be 

expected by the attacker, because it depends on some observation done by the RL agent that leads 

to a dynamic state of the environment which results in a high interaction cyber deception system 

due to the action space of the RL agent. Furthermore, the level of deception exponentially rises 

when techniques like RL are used. Ghourabi, Abbes & Bouhoula (2011) proposed using honeypots 

to detect and study attacks against Web services. In the proposed solution, they deploy a honeypot 

as a web service application. This decoy system captures all request messages and analyzes them 

using ML techniques to detect the attacks.  

Pauna & Patriciu (2014) developed an artificially intelligent model based on case-based 

reasoning (CBR). Their adaptive model was inspired by cognitive science and aimed to mimic 

human behavior. Case-based reasoning activities are sometimes divided into two categories: 

interpretation and problem-solving. Hence, it classifies or defines the current situation using 

precedents from earlier cases. 

Dowling, Schukat & Barrett (2019) proposed an adaptive honeypot that learns the best 

answers to attack commands and overcomes the honeypot detection techniques incorporated into 

malware deployments. The suggested honeypot employs a state action space formalism to reward 

the learner for extending attack interactions, and it learns from repeated and automated attack or 

compromise attempts. They have shown that when compared to the normal high interaction 

honeypot, the adaptive honeypot captured a larger dataset with four times more attack command 

transitions after the initial learning phase. Torino (2021) sought to address the limitation of the 

Cowrie SSH honeypot (Cabral et al., 2019) by developing the Cannypot, a configurable honeypot 

that employs RL algorithms. Q-learning algorithm is embodied in the structure of Cannypot. The 

model is based on a database that stores the results of commands as a dictionary. A back-end 

service supplies a list of possible outputs to be appended to the dictionary and a front-end maintains 

the list of unidentified commands. The greatest disadvantage of this model is the amount of storage 

space required for the dictionary. Navarro (2021) has introduced a honeypot ‘Python RASSH’ 

which clones Kippo, a non-adaptive honeypot defeated by Cowrie (Medium-interaction honeypot). 

It is based on the SARSA algorithm, which is an e-greedy strategy and there is a new action called 

‘delay’ in the algorithm which postpones the execution of the orders entered by the attacker. Also, 

unlike some other frameworks, it changes the action of a “substitute command” with the concept of 

a “fake command” which gives the attacker a wrong output.  

http://www.rria.ici.ro/
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Touch & Colin (2022) proposed an adaptive self-guarded honeypot: Asgard. It employs RL 

to monitor the tools and actions of the attackers and offers protection against deep compromise. 

The authors then contrast Asgard to the standard SSH honeypot Cowrie. Unlike Cowrie, Asgard 

could collect better quality information about the attacker's behavior at the time it could bypass 

detection techniques. One more advantage of Asgard compared to Cowrie is the fact that it could 

defend the system for as long as it could either through blocking or shading malicious programs or 

commands. Kunz et al., (2023) proposed MARLon: Multi-Agent Training ON CyberBattleSim. 

CyberBattale is a Python OpenAI Gym environment used to model network security issues (Walter, 

Ferguson-Walter & Ridle, 2021). The environment created by CyberBattleSim is a network of 

servers connected by several network connection protocols. The multi-agents model consists of two 

agents, a defender, and an attacker. They are trained to operate in the network environment using 

the proximal policy optimization PPO algorithm at the same time. The authors describe the changes 

and report on the results obtained when training the defending agents, either isolated or jointly with 

the attacker agents in the same environment. 

In this research, the TangleNet framework is proposed. It uses Reinforcement Learning and 

advanced deception techniques to simulate a realistic multi-server network environment, 

dynamically engaging attackers to extend interactions, improve monitoring, and reduce human 

intervention while offering deep insights into the attacker’s behavior. In TangleNet, the RL agent 

leverages the Q-learning algorithm to make realistic decisions: Allow, Block, or Substitute, based 

on the network's current state, causing transitions to new states for dynamic cyber security. Table 1 

summarizes and compares the characteristics of the existing cyber deception models with 

TangleNet.  

Table 1. Gap Analysis 

 Ref. Approach 
Specific or 

generic 

Level of 

interaction 

Level of 

Deceptiveness 
Dataset Algorithm 

Ghourabi, Abbes 

& Bouhoula 

(2011)  

ML Web M M ✓ 
SVlvI, 

Apriori 

Pauna & 

Patriciu (2014) 
AI SSH M M ✓ - 

Dowling, 

Schukat & 

Barrett (2019)  

RL SSH H H 
 

- 
SARSA 

Torino (2021)  RL SSH H H ✓ Q-Learning 

Navarro (2021)  RL SSH H H 
 

- 
SARSA 

Touch & Colin, 

2022 
RL SSH H H 

 

- 
Q-Learning 

Kunz et al., 

(2023)  
RL 

SSH, FTP, 

Mail, 

Database 

server 

H H 
 

- 
PPO 

TangleNet RL 

SSH, FTP, 

Mail, 

Database 

server 

H H 
 

- 
Q-Learning 

4. Proposed solution: TangleNet  

4.1. Overview 

TangleNet integrates the essence of deception in the cybersecurity field with the power of 

Reinforcement Learning to create a highly effective and efficient deception strategy that provides 

the blue team with visibility into the attacker's core techniques. The objective of TangleNet is to 

prolong and extend the attacker’s interaction with the cyberdeception system by responding 
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dynamically, thereby elevating the level of deception, ensuring comprehensive monitoring, and 

minimizing human intervention. 

In TangleNet, the considered network topology closely simulates real-life network 

environments. As illustrated in Figure 2, the topology comprises four servers: SSH server, FTP 

server, Mail server, and Database server. This will make TangleNet heterogenous, unlike 

conventional cyberdeception where only one server behavior is implemented. These servers are 

typical of the services that can be found in most networks. These types of servers are intended to 

develop an ideal condition that exhibits a variety of network behaviors and weaknesses. When an 

attacker tries to communicate with such servers using commands, the cyber deception starts by 

intercepting and analyzing. It then decides its action, whether to allow the attacker to continue 

attacking the current server, search for another server, or move to attack another server remotely. 

The learning process of the RL agent starts with the perception of the environment in this case the 

attacker’s commands. It is out of this observation that the agent can learn and come up with 

relevant decisions about the course of action to undertake about a certain command. 

 

Figure 2. Network topology 

4.2. TangleNet design and implementation 

The design phase is crucial in the RL process. It comprises setting up the environment, 

defining the agent's actions and rewards, and selecting the most effective algorithm to train the 

agent. In this section, different RL model components are presented followed by the 

implementation and evaluation of TangleNet. 

4.2.1. Environment 

The CyberBattle platform (Walter, Ferguson-Walter & Ridle, 2021) and Mininet library 

Mininet/mininet 2.3.0 (2021) are used to create a realistic network environment. CyberBattle is a 

platform designed by Microsoft to simulate cyber-attack scenarios. Mininet is a network simulator 

that allows the creation of virtual network topologies. Mininet is useful in designing the network 

structure, configuring servers, and simulating the network interactions. This gives control over the 

network environment and facilitates the evaluation of the performance of TangleNet by mimicking 

real-life network scenarios. Combining the capabilities of the CyberBattle platform and the Mininet 

library helps obtain a robust and realistic network simulation environment.  

In the simulated environment, four servers are considered: SSH, FTP, Mail, and Database 

servers, as illustrated in Figure 2. Each server was assigned specific functionalities and 

vulnerabilities to replicate real-world network scenarios. Each server is designed to have a number 

of vulnerabilities named VulCounterX, X denotes the servers: SSH,FTP,Mail,DB. A flag is 

assigned to each vulnerability, once it is exploited, this flag is checked by the RL agent, and 

VulCounterX is decremented.  

http://www.rria.ici.ro/
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The attacker's behavior consists of executing commands (shell commands: ls, cat, wget, pwd, 

ssh, nmap, dd, chmod or some shell scripts) on the different servers present in the network scenario. 

The attacker executes the command to achieve one of the following goals: (1) exploiting a 

vulnerability in the current server where the attacker resides, (2) exploiting a vulnerability in a 

remote server from the current server (from the location of the attacker), (3) discovering a new 

server, or (4) preparing for the exploitation phase in the target server.  

Consequently, in TangleNet, the attacker enters commands that can be mapped to one of the 

following categories: 

• Exploitation commands (denoted E): any command used to execute a malicious code 

in the target server (local or remote); 

• Discovery commands (denoted D): any command used to discover the network, 

particularly the servers in the network; 

• Other commands (denoted O): any other commands that cannot be mapped to E or D. 

It comprises all other commands used to prepare the exploitation of the vulnerabilities.  

TangleNet is preloaded with a huge set of commands categorized into E, D, and O. This 

categorization is based on many threat intelligence sources and the analysis of different commands 

that may be used by the attacker on different servers.  Each time the attacker executes a command, 

TangleNet first categorizes the command as E, D, or O. Particularly, a similarity score between the 

command and the set of preloaded commands is calculated to decide on its category.  

In TangleNet the states are defined based on the category of commands entered by the 

attacker in addition to information about the target server and the attacker's location. Particularly, a 

state S is defined as follows: 

  S:[Category of the command, environmental information] 

Where the Category of command can be E, D, or O and the environmental information comprises: 

- The current server (location of the attacker) 

- The target server (target of the attacker) 

- The number of vulnerabilities not yet exploited VulCounterX in the target server X. 

An example of State is presented below: 

  

Where: 

- E: the attacker entered an exploitation command 

- SQL Server: The current location of the attacker 

- SSH server is the target server 

- 4 is the number of vulnerabilities not yet exploited on the SSH Server. 

4.2.2. RL agent 

In TangleNet, the RL agent will respond realistically by following a clear decision-making 

process. It uses the Q-learning algorithm, which begins when the agent receives a state from the 

environment. The states in TangleNet represent the current configuration and status of the network 

as explained in the previous section. Once the RL agent observes a state Si, it must decide on one of 

the three actions: Allow, Block, or substitute, which makes the system transit to a new State Sj 

(Touch & Colin, 2022). The actions of the RL agent are as follows: 

- Allow the command to be executed to exploit the vulnerability in the target server.  An 

example of a transition from state Si (equation 1) to a potential state Sj upon the execution of 

an Allow:  
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- Block the command to give the attacker the allusion that it is a real environment and avoid the 

detection of the decoy servers. An example of a transition from state Si (equation 1) to a 

potential state Sk upon the execution of a Block: 

 

- Substitute: to make the attacker change its attack strategy by entering new commands, 

Consequently, the interaction period with the attacker will be extended and the RL agent will 

be able to collect more information about it. An example of a transition from state Si 

(equation 1) to a potential state Sl upon the execution of a Substitute: 

 

4.2.3. Learning algorithm 

Q-learning is a Reinforcement Learning technique that enables the agent to learn the optimal 

action selection based on the current state (Chadi & Mousannif, 2023). In the implementation of 

TangleNet the Q-learning algorithm is used to implement the behavior of the RL agent. Initially, 

the Q-table is empty, as the learning process begins, the RL agent will store a pair of (state, action) 

associated with the maximum reward obtained over time. 

The number of states depends on the type of the commands (E, D, or O), the current server, 

the target server, and the number of vulnerabilities in each server as explained above. The RL agent 

can take one of three actions {Allow, Block, Substitute}. During each learning cycle, the agent 

stores in the Q-Table a pair consisting of an action and a state, along with the accumulated reward 

obtained from performing that specific action in that state. 

A description of the procedural form of the algorithm is provided in Algorithm 1. 

 

4.2.4. Reward function 

The reward system encourages the agent to trick the attacker into staying in the network and 

prolonging the attack. The reward increases whenever the agent successfully deceives the attacker. 

http://www.rria.ici.ro/


Romanian Journal of Information Technology and Automatic Control, Vol. 35, No. 1, 23-36, 2025 31 

 http://www.rria.ici.ro 

The model’s reward function is based on the states and the actions the RL agent can take in the 

environment. The agent will receive a reward when it performs the correct action in a specific state.  

Initially, the agent may not receive a high reward as it only starts the learning process. Over 

time, the agent will learn to take the correct action in each state and will get rewarded consistently.  

It is worth recalling that the main objective of TangleNet is to prolong the existence of the 

attacker in the network and trick him into executing more commands on the target server. 

Consequently, TangleNet will be highly interactive and can learn more about the attack patterns 

executed to compromise the servers in the network. The reward function must consolidate 

TangleNet to achieve this goal. Hence the RL must select the adequate action each time the 

attacker executes a command on the target environment. The proper action must trick the attacker 

into frequently substituting the command mainly if it is in the exploitation and discovery phases 

(commands type E and D) before allowing or blocking it.  Hence, the reward function R at a time t 

is given as follows: 

 

5. Experimentation 

5.1. Experimentation setup 

The network configuration consists of four servers: FTP, SSH, MySQL, and SMTP. They 

depict typical services that exist in the networks. A firewall is used to protect the network from 

unauthorized access as depicted in Figure 2. VLAN is enabled on the firewall with the VLAN 

mode specified as dot1q. In this topology, VLANs are configured on the firewall interfaces with 

VLAN tags of 10,20,30 & 40. Moreover, the IP forwarding is configured on the firewall to let 

forward packets to any of the interfaces. On each server, there is a setting of the default gateway, 

and traffic is directed through the VLAN interfaces of the firewall. Moreover, the system of NAT 

(Network Address Translation) rules is integrated into the firewall to perform the masquerading on 

the external interface. This makes it possible for the firewall to mask the internal IP addresses to be 

forwarded to the external network. 

5.2. Results 

TangleNet is designed in a way that would effectively extend attacker’s experience in the 

network and capture crucial Tactics, Techniques, and Procedures (TTPs). The RL agent is designed 

to generate deceptive responses that mimic real servers' behavior, confounding attackers and 

prolonging their interaction. Two metrics are considered to assess the effectiveness of the RL 

agent: the deceptiveness level and the interaction time. The level of deceptiveness is the number of 

commands executed by the attacker. A higher number of executed commands indicates a higher 

level of deception in the environment. This metric serves as a quantifiable measure of the RL 

agent's ability to prolong the attack. The interaction time is the average duration of interaction 

between the attacker and the RL agent either by completing all the episodes or compromising the 

target server or the whole network. This metric reflects the agent's efficacy in making timely 

decisions and executing actions properly. 

The number of commands entered by the attacker and the duration of the attack are 

illustrated as a function of the number of episodes in Figures 3a and 3b respectively. Figure 3 

shows a positive correlation between the attack duration in minutes and the number of commands 

entered by the attacker. Figure 3a shows that the average duration required to attack a server is 

about 21 minutes between the first and the fifth episode, then decreases to around 16 minutes 

between episodes 6-8 before increasing exponentially starting from episode 9.  Similarly, Figure 3b 

shows that the initial number of commands is around 39 between the first and the fifth episodes, 
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then decreases to around 31 commands between episodes 6-8 before increasing exponentially 

starting from episode 9. The decrease in the duration and the number of commands between 

episodes 6 and 8 can be explained by the fact that the RL is just getting started with the learning 

process, the Q-table is initially empty so it needs a certain time to initialize it with adequate pair of 

(state, action). Overall, the attack duration and the number of commands reflect the high 

deceptiveness level of TangleNet: the higher the duration of the attack, the higher the number of 

commands is, consequently the deceptiveness.  

 
(a) The duration of the attack for each trial 

 
(b) The number of commands entered for each 

episode 

Figure 3. Correlation between the attack duration and the number of executed commands 

Further experiments are conducted to investigate the performance of TangleNet. Particularly, 

the deceptiveness of TagleNet is measured using the average amount of time needed for the 

attacker to compromise a server or the entire network.   

Table 2 presents the performance of the TangleNet on each server separately. The average 

duration of the attack and the average number of commands are calculated for each server.  

Table 2. TangleNet attack trial statistics per server 

 
Server 

Average Attack 

Duration 

Average # of Executed 

Commands 

SSH 28min 43 

FTP 19min 36 

SMTP 35 min 26 

MySQL 28min 51 
 

As shown in Table 2, the attacker was able to compromise the SSH server after an average of 

28 minutes by executing 43 commands.  For the FTP server, the attack duration is 19 minutes and 

the attacker executed 36 commands. Table 2 points out the RL agent succeeds to extend the attack 

duration and this is due to the substitute action performed as reaction to the commands executed by 

the attacker. The extended attack duration allows the attacker to explore more attack patterns and 

execute more commands. 

Table 3 provides the results of these experiments used to deeply evaluate the deceptiveness 

of the TangleNet agent as a function of the initial location of the attacker. It shows the following 

information: 

• The initial location of the attacker before pivoting in the network; 

• Average Attack Duration: This column shows the average attack duration in minutes 

for each trial; 

• Number of Commands: it represents the number of commands executed by the attacker; 

• Compromise the whole network: it indicates whether the attacker succeeds in 

compromising the entire network. 
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Table 3. TangleNet attack trial statistics for the whole network 

As shown in Table 3, the attacker was able to compromise the network from the SSH server 

and the MySQL server as initial locations before pivoting to other servers.  It needed an average of 

30 minutes to execute 50 commands which was the required number of commands needed to 

compromise the network. Similarly, it needed around 60 commands to compromise the whole 

network if it started from MySQL server.  

On the other hand, Table 3 shows that the attacker failed to compromise the network when it 

started from server FTP and SMTP. The number of trial 9 was not sufficient for the RL agent to 

extend the attack until the whole network was compromised, the duration of 20 minutes was 

insufficient to compromise the whole network by referring to Table 2, the duration of 19 minutes 

was required to compromise only the FTP server. More time would be given to the RL agent to 

learn how to prolong the attack duration.  

6. Conclusion and future work 

TangleNet offers an innovative solution by integrating deception techniques and 

Reinforcement Learning to effectively extend the attacker’s engagement, capture crucial TTPs, and 

enable proactive defense strategies. TangleNet reduces human interference, automates threat 

intelligence gathering, and improves overall security posture. It generates deceptive responses that 

mimic genuine server behavior, confounding attackers and prolonging their interaction. The 

experimentation results show a positive correlation between the level of deception and the number 

of commands executed by the attacker which effectively increases the confusion. The TangleNet 

interactiveness is measured by the average time it takes an attacker to compromise a server or an 

entire network. Longer session time indicates a higher level of interaction, resulting in longer attack 

time. This extended attack window allows for more comprehensive data collection of changing 

attack patterns. 

Although TangleNet improves the current application of RL in cyber deception, it does not 

consider the previous or following situations, because a single command may not lead to a 

malicious situation, but a series of commands may do. Further research efforts should explore 

potential approaches to achieve state correlation in the decision-making process.  

As future work, it is expected to use RL to implement the attacker’s behavior. Furthermore, 

more experiments would be conducted to compare TangleNet to other cyberdeception tools.   

Attacker 

Initial 

Location  

Attacker Trial 

(# of attempts) 

Average 

Attack 

Duration 

#of 

Command 

Executed 

Compromise the 

whole Network 

SSH Server 

1-5 25min 45 x 

6-8 18min 32 x 

9 30min 50 ✓ 

FTP Server 

1-5 22min 38 x 

6-8 15 min 28 x 

9 20min 42 x 

SMTP 

Server 

1-5 10 min 20 x 

6-8 12 min 24 x 

9 15min 32 x 

MySQL 

Server 

1-5 28min 52 x 

6-8 20min 40 x 

9 35min 60 ✓ 
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