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Abstract: Research in the field of autonomous vehicles has made good progress in the last years, but mass 

adoption is unlikely to happen very soon due to, in most part, important ethical and security concerns. The 

authors consider that niche uses of autonomous vehicles are more likely to be researched and developed, 

since they can substantially make an immediate difference in specific applications. In this paper we analyse 

and propose a novel genetic algorithm-based dynamic itinerary generation mechanism for use in autonomous 

tour guides, with the goal of achieving the highest amount of itinerary point visits in the given timeframe. It 

does that by taking into account the available time and the tour points that are defined as most important by 

the tourist, through a ranking system and by integrating real time data, such as traffic conditions. By 

autonomous tour guide we refer to any vehicle capable of autonomously carrying a tourist or group of 

tourists. The algorithm proves to be reliable and fast enough to allow for dynamic reconfiguration of the 

itinerary. 

Keywords: Genetic Algorithms, Autonomous Tour Guides, Autonomous Vehicles, Smart Tourism, Route 

Planning, Artificial Intelligence. 

Optimizarea generării de itinerarii pentru ghizi turistici 

autonomi prin integrarea datelor în timp real în 

algoritmi genetici 
Rezumat: Cercetările în domeniul vehiculelor autonome au făcut progrese semnificative în ultimii ani, însă 

adoptarea în masă este puțin probabil să se întâmple foarte curând, în mare parte din cauza preocupărilor 

importante legate de etică și siguranță. Autorii consideră că utilizările de nișă ale vehiculelor autonome sunt 

mai susceptibile să fie cercetate și dezvoltate, deoarece acestea pot face o diferență substanțială imediată în 

aplicații specifice. În această lucrare, analizăm și propunem un mecanism inovativ de generare dinamică a 

itinerariilor, bazat pe algoritmi genetici, destinat ghizilor turistici autonomi, având ca scop realizarea unui 

număr maxim de vizite ale punctelor de itinerariu în intervalul de timp dat. Acest lucru se realizează prin 

luarea în considerare a timpului disponibil și a punctelor de interes stabilite ca fiind cele mai importante de 

către turist, printr-un sistem de clasificare, și prin integrarea datelor în timp real, cum ar fi condițiile de trafic. 

Prin „ghid turistic autonom” ne referim la orice vehicul capabil să transporte autonom un turist sau un grup 

de turiști. Algoritmul se dovedește a fi fiabil și suficient de rapid pentru a permite reconfigurarea dinamică a 

itinerariului. 

Cuvinte cheie: algoritmi genetici,  ghizi turistici autonomi, vehicule autonome, turism inteligent, planificarea 

rutelor, inteligență artificială. 

1. Introduction 

Although relevant advancements have been made in the research of autonomous vehicles, 

mass adoption of such vehicles is still far from being achieved, due to security, ethical and other 

technological and legal concerns (Bezai et al., 2021). 

The present indication is that autonomous vehicles are to be used less by individuals, and 

mostly in other applications, such as group travel, especially due to environmental concerns, or to 

improve daily repetitive travel, having examples of autonomous buses (Azad et al., 2019), or 

autonomous waterborne vehicles for museum visits (Rong et al., 2020). 

There are some reasons why the adoption of alternative applications is likely to happen: 
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• Easier to manage in controlled environments. Autonomous buses, for example, would 

drive in dedicated bus lanes, which means that some typical issues could be eliminated 

from the start, by installing sensors and hardware on the designated routes to help with 

pedestrian detection, direction control and collision avoidance. The legal framework is 

easier to define since other vehicles are forbidden to enter the bus lane. Even if 

accidents were to happen, accountability would be easy to attribute; 

• Easier legislation changes. A new legal framework is easier to generate for a specific 

application, compared to broader scenarios that would have to take into account 

multiple unexpected unknowns; 

• Cost efficiency. Generating higher income and profit through automation is generally a 

good strategy for companies to implement. Business people are more likely to invest in 

novel technologies than regular users. In the proposed use case, a travel agency or tour 

guide company could benefit from promoting travel packages with a packed itinerary 

that could be guaranteed through the usage of smart autonomous tour guides. 

The travel trends indicate a high growth of experience-centred travel (Hosany, Sthapit & 

Björk, 2022), being referred to as a “mega trend”. This and smart tourism, which proposes tools 

that can be used to automate aspects of travel, have a high potential, a reason to consider the 

proposal of a dynamic itinerary generation mechanism.   

Itinerary generation and proposal is not something currently automated and it is not only a 

problem for the pre planning phase, but also one concerning the actual trip. Among the  problems 

travel agencies usually face is finding a partner tour guide, and it can become a tedious process that 

doesn’t guarantee the success and satisfaction of a trip. 

Smart route planning is a prominent research issue in tourism (Zhou et al., 2019) and it could 

be a viable idea to intertwine the two domains to reach a common solution for a real problem. 

Route planning for an autonomous tour guide is not only about calculating the shortest path, 

but also about integrating user preferences, time constraints and real time environmental changes. 

Traditional brute force algorithms become impractical as the number of variables increases due to 

their exponential runtime. Although the task resembles the Travelling Salesman Problem (TSP) in 

that it involves finding an optimal path through multiple locations, traditional TSP algorithms 

aren’t well suited to handle additional variables efficiently (such as the ones mentioned earlier), 

and that is why genetic algorithms could be chosen, due to their flexibility and adaptability. In a 

context where a travel itinerary can't be rigidly fixed and must be adapted to unforeseen changes, 

genetic algorithms provide the best available solutions within a reasonable timeframe. 

Genetic algorithms are well researched in autonomous vehicle applications, for example 

such algorithms have been used for the planning of autonomous UAVs in target coverage problems 

(Pehlivanoglu, Y.V. & Pehlivanoglu, P., 2021), route planning in AVs of different kinds (Yu et al., 

2012) and car navigation systems (Kumar, Arunadevi & Mohan, 2009) and (Yan & Lu, 2019).   

Section 2, begins with a short review of some related work on route planning, making a 

comparative analysis of two different common approaches, and ends by highlighting the limitations 

of these traditional methods. In section 3 the details of the proposed algorithm are explained, 

section 4 introduces the concept of real time data integration, and section 5 provides the results of 

the experiments done. Section 6 comprises the conclusions and discussion about future work.   

2. Comparative analysis 

The simplest and easiest attempt to try and solve a route planning problem is to use an exact 

algorithm. To illustrate the inefficiency of the brute-force methods, however, we performed a 

regression analysis on the computation times relative to the number of tour points. Using data from 

our empirical tests, we fitted the growth model 

( ) b nT n a e =              (1) 
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where T(n) is the computation time in seconds and n  is the number of tour points. The regressions 

yielded the constants  with a coefficient , which is a high value 

indicating a good fit, confirming that the computation time increases exponentially with the number 

of tour points. 

Although 25 tour points would take approximately 16 seconds, the time required for 30 tour 

points is estimated at 8.6 minutes, and more than 40 points would take a few hours. Such times are 

impractical for real time route planning. 

In Figure 1 the growth in computation time can be visualized as the number of tour point 

increases, as it resulted from our experiment. 

  

Figure 1. Exponential regression of computation time versus number of tour points 

The next observation that can be made is that this problem closely resembles the TSP 

problem, where the shortest possible route must be achieved by visiting a set of locations only once. 

Some of the algorithms commonly used to solve the TSP are the nearest neighbour heuristic, 

branch and bound algorithm, or dynamic programming approaches, but they assume a static 

environment that does not fit with the real-time data integration. 

There are various TSP solvers designed to find the optimal solution . It is still a matter of 

research. The most common method to solve TSP is the Concorde Solver developed by Applegate 

et al. (2006). It is widely used in academic research due to its efficiency and accuracy. Trying to 

find an optimal path using this method, by representing a distance matrix between 14 pairs of 

attractions was considered for a start. The solver requires a problem definition in the TSPLIB 

format, so the file describing the TSP instance as such was created: 

NAME: tour_points  

TYPE: TSP COMMENT: TSP instance for tour points  

DIMENSION: 14  

EDGE_WEIGHT_TYPE: EXPLICIT  

EDGE_WEIGHT_FORMAT: FULL_MATRIX  

EDGE_WEIGHT_SECTION  

0 5 10 15 4 6 9 8 12 20 7 5 14 16 5 0 7 12 6 4 8 5 10 18 9 3 12 14 10 7 0 5 9 11 4 6 8 15 12 

9 7 10 15 12 5 0 14 16 9 11 6 10 17 14 12 8 4 6 9 14 0 3 7 6 13 21 5 4 15 17 6 4 11 16 3 0 

10 7 14 22 6 2 16 18 9 8 4 9 7 10 0 3 9 17 11 8 8 11 8 5 6 11 6 7 3 0 7 15 10 5 9 12 12 10 8 

6 13 14 9 7 0 8 14 11 10 4 20 18 15 10 21 22 17 15 8 0 22 19 12 5 7 9 12 17 5 6 11 10 14 

22 0 7 16 19 5 3 9 14 4 2 8 5 11 19 7 0 13 15 14 12 7 12 15 16 8 9 10 12 16 13 0 9 16 14 

10 8 17 18 11 12 4 5 19 15 9 0  

EOF 

 

The EDGE_WEIGHT_SECTION contains the distance matrix that is defined in Table 1: 
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Table 1. The distance matrix used for the TSP Concorde Solver 

From/To 1 2 3 … 14 

1 0 5 10 … 16 

2 5 0 7 … 14 

3 10 7 0 … 10 

…      

14 16 14 10 … 0 

By running the program an optimal tour length of 85 km was obtained, as well as the 

following tour order: 1 5 6 12 14 13 11 10 9 7 8 2 4 3 1. Adding up the duration spent on the travel 

times and the tour times, a total tour duration of approximately 14.7 hours resulted. That exceeds 

the time limit we set for our experiments in the following sections. Besides, this approach does not 

meet all constraints set, nor could it integrate real time data to improve the outcome, which is a key 

aspect to be solved. 

Heuristics like the Ant Colony Optimization (ACO) have been effectively applied to the TSP 

(Li et al., 2016), but such algorithms require high computation resources and may not adapt quickly 

to changes, which makes it unfit. 

Simulated annealing (SA) can handle large search spaces, but it typically requires careful 

tuning of parameters and may converge slowly for multi objective problems as found by 

Kirkpatrick, Gelatt & Vecchi, (2012). 

In contrast, genetic algorithms have already been successfully applied to route planning, for 

example Yu & Lu, (2012) developed an improved GA for multi-modal route planning that 

effectively handles complex transportation networks and varying constraints. 

Zhang, Tang & Zheng, (2019) proposed an adaptive GA that incorporates traffic factors into 

the dynamic TSP. They considered real-time traffic information and their algorithm adjusts routes 

dynamically to optimize travel times. This approach is similar to the present one.  

In recent papers, such as the one by Tang, Pan & Wang, (2017), a hybrid GA for the shortest 

path problem is proposed, with their algorithm efficiently recalculating optimal paths in response to 

network changes.  

The choice of a genetic algorithm approach can be justified by highlighting three important 

advantages. First of all, GAs can find high quality solutions faster than exhaustive methods, thus 

being more efficient for real time applications. Second, GAs are flexible because they can 

incorporate multiple objectives and constraints. Then, adaptability is another important advantage, 

because GAs can adjust to changes in the environment without restarting the entire computation 

process (Wang & Chen, 2015). 

3. Methodology 

To begin with, a population of possible solutions are generated from a list of predefined tour 

points, which are given a duration and a rating, that means a dynamic variable that can have a 

different value for each user of the system, and can be changed with each individual run. 

Every set of all possible solutions is called a generation. The first generation is a random 

choice of possible solutions. 

To calculate how good a solution is a fitness function considering the duration and the rating 

is used. It returns the cumulated time to visit for each attraction when it is lower than the limit, 

otherwise it doesn’t. 

Then a solution with a higher fitness score is selected for moving on to the next generation, 

followed by the tournament selection, and the crossover function. 

Although a single point crossover function was taken into consideration, it was found that 

using it, one of the most common types of crossover functions, was not satisfactory for the use case, 

http://www.rria.ici.ro/
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to ensure the uniqueness of the tour point as a tour point cannot be visited twice. 

The final two steps were the mutation, which randomly swaps two tour points between 

generations, and the replace function at the end, that replaced the previous population. 

The algorithm generated a result as soon as the maximum number of generations had been 

reached. 

The novelty of this approach is represented by the introduction of various sources of real 

time data, to account for the changing traffic conditions and the changing weather conditions, to 

start with. Figure 2 we provided a graphical representation of the algorithm. 

 

Figure 2. GA operations 

3.1. Population initialisation 

 The first step is to define the “Initialize Population” function, which will be 

responsible for the generation of the initial population of potential solutions, each individual within 

the population representing a unique itinerary, randomly constructed by sampling a number of 

points from the total set of available tour points: 

Function InitializePopulation(populationSize, tourPoints, individualSize) 
    population ← empty list 
    For i ← 1 to populationSize 
  individual ← SampleWithoutReplacement(tourPoints.keys(), individualSize) 
        Add individual to population 
    End For 
    Return population 
End Function. 
 

3.2. Fitness function 

 The fitness function will evaluate the suitability of a given individual itinerary based 

on the total rating of the selected tour points and the total duration of the tour.  

It penalises itineraries that exceed a predefined limit, so that the tourists preferences are 

taken into consideration together with the time constraint: 
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Function Fitness(individual, tourPoints, durationLimit, penaltyRate) 
    totalRating ← 0 
    totalDuration ← 0 
    For each pointId in individual 
        point ← tourPoints[pointId] 
        totalRating += point.rating 
        totalDuration += point.duration 
    End For 
    If totalDuration > durationLimit Then 
        penalty ← (totalDuration - durationLimit) * penaltyRate 
        totalRating -= penalty 
    End If 
    Return totalRating 
End Function. 

3.3. Tournament selection 

 Tournament selection is a method to select individuals to participate in the creation of 

the next generation.The function randomly selects a small subset of the population and chooses the 

individual with the highest fitness score within the subset. The process is repeated until a sufficient 

number of individuals have been selected: 

 
Function TournamentSelection(population, fitnesses, tournamentSize) 
    selectedParents ← empty list 
    While Length(selectedParents) < Length(population) / 2 
        tournament ← SampleWithoutReplacement(Combine(population, fitnesses), tournamentSize) 
        winner ← MaxBySecondElement(tournament) 
        Add winner[0] to selectedParents 
    End While 
    Return selectedParents 
End Function. 

3.4. Unique crossover 

The main difference between a single point crossover function and a unique crossover 

function is that the unique crossover ensures the uniqueness of the individuals in the population. 

This function creates new generations from parent itineraries by combining their tour points. The 

function concatenates the tour points from both parents, removes duplicates and randomly selects 

tour points until the child itinerary is complete. This ensures genetic diversity while making sure 

the points are unique: 

Function UniqueCrossover(parent1, parent2) 
    child ← empty list 
    potentialPoints ← Unique(Concatenate(parent1, parent2)) 
    While Length(child) < Length(parent1) 
        point ← RandomChoice(potentialPoints) 
        Add point to child 
        Remove point from potentialPoints 
    End While 
    Return child 
End Function. 

3.5. Mutation without repeats 

The function randomly selects two positions in the itinerary and swaps corresponding tour 

points. The mutation process is vital for covering as much as possible from the search space and 
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preventing the premature convergence to suboptimal solutions. By design, the function does not 

introduce duplicate tour points: 

Function MutationWithoutRepeats(individual) 
    idx1, idx2 ← RandomSample(Range(Length(individual)), 2) 
    Swap(individual[idx1], individual[idx2]) 
End Function. 

4. Integrating real time data 

In the paper “A Novel Urban Tourism Path Planning Approach Based on a Multiobjective 

Genetic Algorithm” by Damos et al., 2021, the authors use a multi-objective genetic algorithm to 

optimize urban tourism routes based on various static factors such as entertainment value, scientific 

value, and quality of service. The approach simultaneously optimizes multiple objectives, ensuring 

a balance between various aspects of the tourism experience. 

While multi-objective optimization is powerful, integrating real-time data provides several 

key advantages, such as dynamic adaptability, where real time data integration allows the algorithm 

to adapt to current live conditions and ensure the planned route remains optimal even when the 

conditions change. 

One important advantage is the seamless operation, which doesn’t require manual 

intervention, allowing the user to focus more on the experience instead of manually adjusting 

parameters. 

APIs are used to bring in real time data, for the weather and traffic conditions (updated 

distances), and the Fitness function is extended: 

Function Fitness(individual, tourPoints, durationLimit, penaltyRate) 
    totalRating ← 0 
    totalDuration ← 0 
 
    For i ← 0 to Length(individual) - 2 
        start ← individual[i] 
        end ← individual[i + 1] 
        
        point ← tourPoints[start] 
        (real_time_duration, real_time_distance) ← get_real_time_traffic_data(start, end) 
        weather_penalty ← get_real_time_weather_penalty(end) 
        totalRating += point.rating 
        totalDuration += real_time_duration + weather_penalty 
    End For 
    If totalDuration > durationLimit Then 
        penalty ← (totalDuration - durationLimit) * penaltyRate 
        totalRating -= penalty 
    End If 
     
    Return totalRating 
End Function. 
 

5. Experimental analysis 

With a reasonable population size of 14-20 tour points, the algorithm manages to generate 

solutions with a very high fitness score, but random enough to satisfy the constraint of having a 

dynamic experience for each individual tourist. The number of generations can be increased 

beyond 1000 with little performance impact, the only added value being the gain in the stability of 

the solutions, when specific tour points are mentioned more often in the later generations, which 

translates into popular attractions that are usually highly rated being suggested more often. 
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A very similar level of fitness is achieved with less than 5000 generations and even with 

5000 generations. Even up to 10000 generations, considering an 8 hour time limit and only a single 

day itinerary, the time in which the solution is found is negligible. 

Using the following input data, and expecting at least five points to be included while trying 

to fit the highest rating points as well, a possible solution could be seen in Table 2: 

Table 2. Input data for the GA 

Rating Duration (min) Name 

8 90 Historical Museum 

10 60 Royal Botanical Gardens 

6 45 Artisan Market 

9 120 Ancient Castle Tour 

7 30 City Viewpoint 

8 75 Cultural Heritage Museum 

5 20 Local Brewery 

9 55 Modern Art Gallery 

8 80 Seaside Promenade 

10 120 National Park 

7 50 Aquarium Visit 

8 40 Historic Church 

6 60 Science Center 

9 70 Botanic Garden 

The total duration of the itinerary (the first five points) is 375 minutes, and there are two tour 

points with a rating value of 10, one with 9, one with 8 and one with 7, as registered in Table 3. By 

doing a simple calculation, it is obvious that higher rating tour points have not been selected, 

because the time limit would have been exceeded and a lot of spare time would have been left. 

Table 3. Example generated itinerary 

Rating Duration (min) Name 

7 50 Aquarium Visit 

10 120 National Park 

10 60 Royal Botanical Gardens 

9 55 Modern Art Gallery 

8 90 Historical Museum 

To enhance the effectiveness of the route planning algorithm, real-time data, like traffic 

conditions (or restrictions) and weather updates were integrated. This dynamic adjustment 

improves the accuracy and reliability of the generated itineraries. 

To demonstrate the impact of integrating real-time data, an experiment was conducted with 

an initial population of 20 tour points. The algorithm was run for 1000 generations, and the fitness 

score was measured, the total duration and the number of high-rating points included in the 

itinerary. The results can be seen in Table 4. 

http://www.rria.ici.ro/
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Table 4. Results of real time data experiment 

Generation 

Fitness 

Score 

(Static) 

Fitness 

Score (Real-

Time Data) 

Total 

Duration 

(minutes, 

Static) 

Total 

Duration 

(minutes, 

Real-Time 

Data) 

High-

Rating 

Points 

(Static) 

High-Rating 

Points 

(Real-Time 

Data) 

100 45 50 380 370 3 4 

100 47 52 370 360 4 4 

300 48 54 365 355 4 5 

400 49 55 360 350 4 5 

500 50 56 355 345 4 5 

600 51 57 350 340 4 5 

700 52 58 345 335 5 5 

800 53 59 340 330 5 5 

900 54 60 335 325 5 5 

1000 55 61 330 320 5 5 

In the first experiment some lower ranked points were penalized and traffic delays were 

introduced for them, which resulted in a tour with higher ranked points and lower duration. 

Considering that in reality  those  higher rated points could have been bad weather, for example, 

generations for such cases were also run,  because outdoor attractions are prone to bad weather,  

which could reflect in the travel times to the attraction. The results can be seen in Table 5. 

Table 5. Results of second real time data experiment 

Generation 

Fitness 

Score 

(Static) 

Fitness 

Score 

(Real-Time 

Data) 

Total 

Duration 

(minutes, 

Static) 

Total 

Duration 

(minutes, 

Real-Time 

Data) 

High-Rating 

Points 

(Static) 

High-Rating 

Points 

(Real-Time 

Data) 

100 45 42 380 400 3 2 

100 47 43 375 395 4 3 

300 48 44 370 390 4 3 

400 49 46 365 385 4 3 

500 50 47 360 380 4 4 

600 51 48 355 375 4 4 

700 52 49 350 370 5 4 

800 53 50 345 365 5 4 

900 54 51 340 360 5 4 

1000 55 52 335 355 5 4 

Although the generated solutions do not have a higher rating compared to the generations 

that used only the static constraints, it is noticeable that introducing real time data lowers the 

number of higher rated attractions visited, but it does, in the end, generate a more suitable itinerary 

for the guide to follow, which will result in a more satisfactory experience for the user, because, for 
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example, visiting an outdoor location in the rain would not be something that a tourist would 

appreciate, and falling back on an indoor location with a lower rating would be more enjoyable. 

An empirically generated optimal tour that focuses on maximizing the total attraction rating 

within the time constraints was selected, too. The identified itinerary looks as follows: 

• Royal Botanical Gardens (Rating: 10, Duration: 60 min); 

• National Park (Rating: 10, Duration: 120 min); 

• Modern Art Gallery (Rating: 9, Duration: 55 min); 

• Botanic Garden (Rating: 9, Duration: 70 min); 

• Historic Church (Rating: 8, Duration: 40 min); 

• City Viewpoint (Rating: 7, Duration: 30 min). 

This optimal tour achieves a combined rating of 53 and a duration of 375 minutes. The GA-

generated tour has a total rating of 44 and a total duration of 375 minutes. Although the rating is 

lower than that of the optimal tour, the GA succeeded in selecting high rated attractions and it 

respected the time constraint. It took into consideration the traffic and weather data as well, which 

is not a departure from the optimal tour. 

6. Discussions and conclusions 

 The analysis of the algorithm with the simplest constraints leads to the conviction that more 

realistic constraints could be introduced without highly affecting the compute time.  

The efficiency of the algorithm can be its great advantage since it would need as little 

resources as possible while being able to dynamically readjust to unforeseen shifts in the itinerary, 

one of the potential use cases. 

The introduction of the real time traffic and weather data proved to be useful in showing that 

various kinds of real time data could easily be transformed into parameters to refine the algorithm. 

Other factors that are to be taken into consideration are the fixed schedule restrictions that 

some attractions might have, seasonal restrictions and the maximum amount of visitors that can be 

accommodated. This would introduce the need for a real time connection with ticketing platforms 

or other means of dynamically gathering these data. 

A future research direction is to introduce requirements for tourists with special mobility 

needs. Autonomous tour guides are a good option for such tourists, because they can come packed 

with enhanced safety features.  

The algorithm can be extended to take into account the physical state of the occupant (for 

example, if they become fatigued), to consider preferences for rest stops, quieter routes or specific 

areas that are generally easier to navigate, and reroute according to these factors. 

It is very easy to integrate the algorithm in a more complex dynamic travel packaging system, 

since it is a very small and efficient piece of software without any specific requirements. 

The simplicity of the algorithm makes it very easy to experiment with different scenarios and 

generate compelling results in the long term. It also leads to palpable pragmatic uses for companies 

and tour guides, and is yet another small component in a growing ecosystem of software solutions 

and pragmatic niche applications for autonomous vehicles. 
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