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Abstract: This paper proposes a new condition for the root clustering of a real matrix A in a complex region 

D  defined by a polynomial matrix inequality (PMI region). For a general case, a sufficient condition is given 

so that the eigenvalues of A lie in D . It was shown that this condition is necessary and sufficient for some 

particular PMI regions including linear matrix inequality (LMI) regions, quadratic matrix inequality (QMI) 

regions, polynomial regions and many others.  

This paper also provides an extension to the classical theorem of Cyparissos Stephanos, which formulates the 

relationship between the eigenvalues of two matrices and those of composite matrices of their Kronecker 

products. This extension turned out to be crucial for proving the main results obtained.  

Based on the analysis of the proposed condition, a guardian map function can be used for tackling the 

problem of robust D -stability of single-parameter uncertain linear systems, for which the exact and possibly 

disconnected domain of D -stability was determined. All the obtained results were illustrated by certain 

examples. 

Keywords: Root clustering, polynomial matrix inequality, PMI region, LMI region, robust D -stability, 

uncertain systems. 

1. Introduction 

It is well known that the behavior of a linear dynamical system is closely related to the 

localization of its eigenvalues in the complex plane (Gantmacher, 2000). This fact explains the 

interest of the control systems researchers in dealing with the problem of matrix and polynomial 

root clustering in some particular regions related to different stability types. "Stability" here means 

having all eigenvalues for a matrix or zeros for a polynomial in the prescribed region. 

As this problem is over a century old, several results have been established starting with the 

most widely known, that is the Routh-Hurwitz criterion (Routh, 1877), that provides a necessary 

and sufficient condition for determining whether all roots of the characteristic polynomial of a 

linear system have real parts (Barmish, 1994; Bhattacharyya et al., 1995). Then, a series of 

important results have also been established (see Kushel (2019) for a detailed history). Among 

these results especially a general theory of root clustering should be noted, which was developed by 

Shaul Gutman and Eliahu Ibrahim Jury since the beginning of the 1980's (Gutman & Jury 1981; 

Gutman, 1984; Gutman, 1990). This theory is based on the notion of transformable -regions and 

generalized Lyapunov theorem approach. They provided a necessary and sufficient algebraic 

criterion for the eigenvalues of a matrix to lie in a defined complex region, but the method appears 

to be very complicate for efficient numerical implementation. 

More recently, Chilali & Gahinet (1996) introduced the concept of LMI-regions, which are 

some regions in the complex plane that can be described by a linear matrix inequality (LMI). They 

derived a sufficient condition for root clustering in a general class of convex regions, expressed in 

terms of LMIs. This was a starting point for the emergence of a powerful tool for the analysis and 

the synthesis of control systems (Duan et al., 2013). 

Although many LMI regions are of great importance in control theory, a huge variety of 

other stability regions cannot be described by LMI. Thus, an extension formulation was introduced 

in (Peaucelle et al., 2000) under the name of ellipsoidal matrix inequality (EMI) region or quadratic 

matrix inequality (QMI) region. Most of these regions are convex and connected, which is 

limitative for separate dynamics systems and many other constraints. To overcome this limitation, 

Bachelier et al. (2006) proposed a tool for the location of a matrix root in any combination of  
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first-order regions based on the  D -regularity of a matrix that is the non-intersection of its 

spectrum with some curve D . 

This paper focuses on special regions of the complex plane described by a polynomial matrix 

inequality (PMI regions). This description includes polynomial regions, LMI regions, QMI regions 

and many others. A condition is given for root clustering of a matrix A without solving the 

Lyapunov general equation, just by using the Kronecker product to construct a new matrix 

depending on  A and the matrices used in the definition of the considered region. 

The remainder of this paper  is organized as follows: Section 2 is dedicated to the  

D -stability analysis problem. Reminding the reader of the notion of PMI regions, it also presents 

the main result of the paper, that is a new condition for the root clustering of a real matrix A in a 

PMI region D . Section 3 tackles the robust D -stability of an uncertain matrix A(). Using the 

results of Section 2 to define a guardian map that detects when an eigenvalue of A() reaches the 

boundary of D , the entire domain to which the uncertain parameter must belongs so that A() is 

D -stable is provided. The paper is concluded in Section 4. 

2. D-stability analysis problem 

2.1. Definition 

Let D  be an open sub-region of the complex plane described by the following polynomial 

matrix inequality: 

( )
0 ,

,   0p q
pq

p q N

z f z Q z z

 

 =  = 
 
 

DD  (1) 

with 
x T m m

pq qpQ Q=   any real matrices for any p,q = 0,1, …, N.  

The region D  is called a PMI region of order N. 

A matrix A is called D -stable if all its eigenvalues lie in D . Note that ( )f zD can be 

written as follows: 

( ) ( )( ) ( )( )1 1D

H
N N

m mf z z z I Q z z I=  
 

where the exponent H stands for the transpose of the complex conjugate of a matrix and Q is the 

m(N+1)  m(N+1) matrix,  
00 0

0

N

N NN

Q Q

Q

Q Q

 
 

=  
 
 

. 

Many regions of the complex plane are interesting for system poles confinement for the sake 

of absolute or relative stability and many other performance specifications. The best-known and 

most used representation for describing these regions is the LMI description 

where ( ) 00 10 01f z Q Q z Q z= + +D , with 10 01
TQ Q= . This description initiated by Chilali et al. 

(1996) was extended by Peaucelle et al. (2000) to define the quadratic matrix inequality (QMI) 

regions, where, ( ) 00 10 01 11f z Q Q z Q z Q zz= + + +D , with 11 0Q  . 

It is clear that both descriptions are particular cases of the broader PMI description in 

equation (1). In certain cases, LMI or QMI models cannot represent disconnected and non-convex 

regions. Hence, there is no analysis method, as far as is known, that can check for D -stability in an 

efficient way. By contrast, the PMI model can be used to represent such a region very efficiently. 

This paper introduces an efficient and attractive algorithm for checking D -stability and even 

for robust D -stability problems. 
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2.2. Problem formulation 

Let a dynamical system of order n be given by its state space representation: 

                                                   
( ) ( )x t Ax t=

  (2) 

It will be recalled that the spectrum of the matrix A, noted as (A), is the set:  

( )    ,   such that 0  with   nA x Ax x  =     = of exactly n eigenvalues (counting 

multiplicities). Equivalently, the eigenvalues of the matrix A are defined as the n roots of its 

characteristic equation 0A I− = . 

The following subsections aim to provide an easily testable condition for the matrix A to 

have all its eigenvalues in the PMI region D . 

2.3. PMI region: the general case 

For the real matrices
n nA  and 

l lB   with the eigenvalues  , ,    1, ,i i n =  and 

 , ,   1, ,j j l =   respectively, the matrix P(A,B) in 
( ) ( )nlm nlm

: 

( )
0 ,

, p q

pq

p q N

P A B A B Q
 

=    (3) 

with 0
nA I=  and 0

lB I= being the identity matrices of 
n n

and 
l l

respectively 

T m m
pq qpQ Q =   and  is the Kronecker product (see Annexe A1). Also, let the matrix 

( ),M x y be defined in 
m m

as: 

( )
0 ,

, p q
pq

p q N

M x y x y Q

 

=   (4) 

with x and y being any two complex variables. Clearly: 

( ) ( )( )

1

, 1 N
m m

N

y
M x y x x I Q I

y

  
  
  =  
  
  
  
  

      

with Q  being the m(N+1)  m(N+1) matrix: 

00 0

0

N

N NN

Q Q

Q

Q Q

 
 

=  
 
 

 

Also, it should be noted that ( ) ( ),f z M z z=D  for any z . 

Lemma 1  

The eigenvalues of ( ),P A B  are those of ( ),  i jM   , when 1  i n   and 1 j l  . 

Proof 

Let 
H

A A AA S U S=  (see Annexe A2) where AS is a ( )n n  unitary matrix ( )H
A A nS S I=  and 

AU  is a ( )n n  upper triangular matrix with the eigenvalues i of A on the diagonal and let 

H
B B BB S U S=  where BS  is a ( )l l  unitary matrix ( )H

B B lS S I=  and BU  is a ( )l l  upper triangular 
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matrix with the eigenvalues j  of B on the diagonal. 

Clearly, p p H
A A AA S U S=  and q q H

B B BB S U S=  and p
AU  is an upper triangular matrix of 

dimension ( )n n  with the eigenvalues p
i  on the diagonal and q

BU  is an upper triangular matrix of 

dimension ( )l l  with the eigenvalues 
q

j  on the diagonal. Using the Kronecker product properties 

(Graham, 1981), the matrix ( ),P A B  can be written as follows: 

 

( )
0 ,

, p q
pq

p q N

P A B A B Q

 

=  
 

 

( ) ( ) ( )
0 ,

p H q H H
A A A B B B m pq m

p q N

S U S S U S I Q I

 

=  
 

 

( )( )( )
0 ,

Hp q
A B m A B pq A B m

p q N

S S I U U Q S S I

 

=      
 

 

( )
0 ,

H
pq pq

p q N

T U Q T

 

= 
 

with 
A B mT S S I=    being, obviously, a unitary matrix of dimension ( )mnl mnl  and 

p q
pq A BU U U=   being an upper triangular matrix of dimension ( )nl nl  with the eigenvalues 

p q
i j   on its diagonal. This finally leads to: 

 

( )
0 ,

, H
pq pq

p q N

P A B T U Q T

 

 = 
 
 


 

This expression is clearly a Schur decomposition (Watkins, 2008) of the matrix ( ),P A B  as 

T is unitary and 

0 ,

H pq pq

p q N

U U Q

 

=   is an upper triangular block matrix with the same 

dimension as T. As a result, ( ),P A B  and 

0 ,

pq pq

p q N

U Q

 

   are in fact similar matrices, that is, 

they have the same eigenvalues. Clearly, the set of these eigenvalues consists of the eigenvalues of 

every block on the diagonal of 

0 ,

pq pq

p q N

U Q

 

 , namely: 

 0 ,

p q
i j pq

p q N

Q 

 


 

which is precisely ( ),i jM   . This completes the proof.        ▀ 

It must be pointed out that Lemma 1 represents an extension of the well-known theorem of C. 

Stephanos (Stephanos, 1900) which states that for the matrices   n nA   and   l lB  with 

eigenvalues 1,  , n   and 1,  , l   respectively, the eigenvalues of the matrix 
0 ,

 p q
pq

p q N

c A B
 

 , 

with pqc  being some arbitrary scalars, are exactly the nl values 

0 ,

p q
pq i j

p q N

c  
 

 , for 1, ,i n=   

and 1, ,j l=   (see Annexe A3). When the matrices pqQ  in Lemma 1 are of dimension 1, 

Stephanos's result is retrieved. 

In the remainder of this paper ( ),H A  D  will stand for ( ), P A A  when the matrices pqQ  are 
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those used for the description of the PMI region D  through the function ( )
0 ,

p q
pq

p q N

f z Q z z

 

= D . 

That is: 

                                    ( )
0 ,

, p q
pq

p q N

H A A A Q

 

=   D  (5) 

Theorem 1 

Let ( ),H A  D  be the matrix defined by equation (5). If the real eigenvalues of ( ),H A  D  are 

all negative, then the roots of A lie in the PMI region D .  

If ( ),H A  D  has no real eigenvalue then A is not D -stable. 

Proof 

As the PMI region D  is described by ( )
0 ,

0p q
pq

p q N

f z Q z z

 

= D , the eigenvalues of 

( )f zD  must all be negative, when z lies well inside of D .  When z takes on the eigenvalues of a 

matrix A, the eigenvalues of ( )f zD  must all be negative for the matrix A to be D -stable. As these 

eigenvalues coincide with those of ( ),  i iM   , when 1 i n  , which, in turn and by virtue of 

Lemma 1, are among the real eigenvalues of ( ),H A  D , a sufficient condition for a matrix A to be 

D -stable is that all the real eigenvalues of ( ),H A  D  be negative. 

Clearly, on the other hand, if ( ),H A  D  has no real eigenvalues, no eigenvalue z of A exists 

such that ( ) 0f z D  and, as a result, the matrix A cannot be D -stable.     ▀ 

Example 1: 

Let the PMI region D  be the intersection of a cardioid and a pear form depicted in Figure 1 

where Re and Im stand for real axis and imaginary axis respectively.  

 

Figure 1. Connected PMI region (dashed) 

This region is described by ( )f zD  as in equation (1) with: 

. . .
,    ,    ,   ,

. . . .

− −       
= = = =       

− −       
00 01 02 03

0 125 0 0 3125 0 0 0156 0 0 0
Q Q Q Q

0 0 247 0 0 169 0 1 0375 0 0 4
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. .
, , , , ,

. . . . .

−         
= = = = =         

−         
11 12 13 22 23

0 7813 0 0 25 0 0 0 1 0 0 0
Q Q Q Q Q

0 0 1375 0 1 6 0 0 15 0 1 45 0 0 3

, , ,,  , 
.

 
= = = = = = 
 

T T T T T
33 10 01 20 02 30 03 21 12 31 13

0 0
Q Q Q Q Q Q Q Q Q Q Q

0 0 2
 and = T

32 23Q Q . 

Let A be a matrix of the form: .

.

A

− 
 

= − 
 
 

1 1 0

2 5 2 0

0 0 0 2

 with eigenvalues , . . = − 1 2 0 5 j0 5  and 

. =3 0 2  which are all in the PMI region. The real eigenvalues of ( ),H A  D  are .−0 2744 , 

.−0 4344  and .−0 0781. As they are all negative, it can be concluded that A is D -stable which is 

indeed the case. 

It must be pointed out that the condition in Theorem 1 is only sufficient, that is the matrix A 

can be D -stable even if the real eigenvalues of ( ),H A  D  are not all negative. For example, the 

matrix 
.

 
.

A
− 

= 
 

0 4 0

0 0 3
 is D -stable whereas the real eigenvalues of ( ),H A  D  are .−0 3585  .−0 05 

.−0 0184 , .−0 0014 , .0 0213  and .0 0659 . The last two of these values are clearly positive. 

Corollary 1 

If an eigenvalue of A lies on the frontier of the PMI region D  defined by equation (1), then 

( ), 0.=H A  D
 

Proof 

The PMI region D  is described by ( )f zD  as in equation (1). If there exists an eigenvalue 

 i  of A on the frontier of D , then ( ) 0if  =D , which implies that the matrix ( ),i iM    have one 

nil eigenvalue. According to Lemma 1 this implies that ( ), 0.H A = D     ▀ 

2.4. D -stability in a class of PMI regions 

A class of PMI regions is considered where the complex domain D  is defined as in equation 

(1) and it is assumed that the following matrix 
rQ  is positive semi-definite:  

11 1

1

0

N

r

N NN

Q Q

Q

Q Q

 
 

=  
 
 

 (6)  

Lemma 2 

For all ,  i j   in the PMI region D defined by equation (1) and 0rQ  , the matrix 

( ) ( )( ), ,H
i j i jM M   +  is negative definite. 

Proof 

 ( ) 00 0 0

1 ,

, p q p q
i j i p j q i j pq

p q N

M Q Q Q Q     
 

= + + +  

 

( ) 00 0 0

1 ,

,  H T p T q T p q T
i j i p j q i j pq

p q N

M Q Q Q Q     
 

= + + +
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( ) 00 0 0

1 ,

,  H p q p q
i j i p j q i j qp

p q N

M Q Q Q Q     
 

= + + +
 

The places of p and q can be switched to obtain: 

 

( ) 00 0 0

1 ,

,  H q p q p
i j i q j p i j pq

p q N

M Q Q Q Q     
 

= + + +
 

 

( ) ( ) 00 0 0 0 0

1 , 1 ,

, ,   2H p q p q q p q p
i j i j i p j q i j pq i q j p i j pq

p q N p q N

M M Q Q Q Q Q Q Q           
   

+ = + + + + + + 
 

It can be written that: 

( ) ( )p q q p p q p q q p p q p q p q
i j i j i j i i i j j j i i j j               + = − + − + +

 
( )( ) ( )p p q q p q p q

i j i j i i j j       = − − − + +
 

Hence: 

( ) ( ) ( ) ( ), , Λ ΛD D
H H

i j i j i j ij r ijM M f f Q     + = + −
 

Where Λij  is the (Nm)m matrix 

( )

( )

( )

2 2

i j

i j

m

N N
i j

I

 

 

 

 −
 
 −
 
 
 
 −
 

. 

Now, because 
i  and j  are both located well inside the PMI region D , ( )if D  and 

( )jf D  are both negative definite and because 0rQ  , the matrix ( ) ( ), ,H
i j i jM M   +  is 

indeed negative definite. This completes the proof.         ▀ 

Theorem 2 gives a necessary and sufficient condition for a matrix A to be D -stable with 

respect to a particular class of PMI region D . 

Theorem 2 

Let D  be a PMI region with 0rQ  . A matrix A is D -stable with respect to D  if and only if 

the real eigenvalues of ( ),H A  D  are all negative. 

Proof  

The sufficiency of the condition has previously been proved by Theorem 1. To prove the 

necessity, suppose that there exists a positive real eigenvalue   for ( ),H A  D . Then, by Lemma 1, 

there exist i  and j  eigenvalues of A in the PMI region D  such that   is also an eigenvalue of 

( ),i jM   . That is, there exists a non-nil vector mv  such that ( ),i jM v v  =  and 

( ),H H H
i jv M v  = . It then easily follows that ( ) ( )( ), , 2 .H H H

i j i jv M M v v v    + =  As  0  , 

( ) ( ), ,H
i j i jM M   +  cannot be negative definite. This contradicts the result of Lemma 2. 

It is concluded that   cannot be positive. This completes the proof.     ▀ 

Corollary 2 

Let D be a PMI region with 0rQ  . If ( ), 0H A = D , then the matrix A is not D -stable. 
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Proof  

If ( ), 0H A = D , then ( ),H A  D  has at least one nil eigenvalue. By virtue of Theorem 2, it 

can be concluded that the matrix A is not D -stable.        ▀ 

Example 2: This case is related to a non-convex connected PMI region 

Let the PMI region D  be of the form illustrated in Figure 2. This region is described by 

( )f zD  as in equation (1) with: 

. ,   . ,   . ,   ,  = = = = = = = =T T T
00 01 10 02 20 11 12 21Q 0 1014 Q Q 130 547 Q Q 16 318 Q 128 Q Q 16  and =22Q 2.  

 

Figure 2. Nonconvex connected PMI region 

 

The matrix 
   

= =   
  

11 12
r

21 22

Q Q 128 16
Q

Q Q 16 2
 is positive semi-definite (the eigenvalues of 

rQ are 0 and 130). 

• Let A be a matrix of the form: 

.

.

.

A

− − 
 

= − 
 − 

3 0 5 0

0 5 3 0

0 0 4 5

 with eigenvalues 

, .j = − 1 2 3 0 5  and . = −3 4 5, which are all in the PMI region D . The real eigenvalues 

of ( ),H A  D  are .−30 485 and .−17 803. It is clear that, as the eigenvalues of A are in 

the PMI-region, the matrix ( ),H A  D  has only negative eigenvalues. 

• Let A be a matrix of the form:

.  

.  A

− − 
 

= − 
 − 

4 954635 1 0

1 4 954635 0

0 0 1

 with eigenvalues 

, .   = − 1 2 4 954635 j  on the frontier of the PMI region D  and  = −3 1  inside D . The 

real eigenvalues of ( ),H A  D  are .−130 35 and 0 . 

• It is clear that, as a pair of eigenvalues of A are on the border of the PMI region, the 

matrix ( ),H A  D  has one nil eigenvalue. 
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• Let A be a matrix of the form: A

− − 
 

= − 
 
 

1 2 0

2 1 0

0 0 1

 with eigenvalues ,   = − 1 2 1 2j  and 

 =3 1  which are all outside the PMI region D . The real eigenvalues of ( ),H A  D  are 

.171 09  and .455 83 . 

It is clear that, as all the eigenvalues of A are out of the PMI region, the matrix ( ),H A  D has 

only positive eigenvalues. 

Example 3: This case is related to a disconnected PMI region 

Let the PMI region D  be the dashed form in Figure 3.  

 

Figure 3. Disconnected PMI region 

 

This region is described by ( )f zD  as in equation (1) with: 

. . .
,    ,  

. . .

− − −     
= = = = =     
     

T T
00 01 10 02 20

34 19 0 11 46 0 7 16 0
Q Q Q Q Q

0 0 81 0 0 8733 0 0 0067
,  

. .
,  

. .

   
= = =   
   

T
11 12 21

10 86 0 0 06 0
Q Q Q

0 0 6378 0 0 06
 and 

.

.

 
=  
 

22

0 01 0
Q

0 0 01
.    

. .

. .

. .

. .

 
 

   = =    
 
 

11 12
r

21 22

10 86 0 0 06 0

Q Q 0 0 6378 0 0 06
Q

Q Q 0 06 0 0 01 0

0 0 06 0 0 01

  is positive definite. The eigenvalues of 

rQ  are . ,   . ,   .0 0043 0 0097 0 6435  and .10 8603 . 

•  Let A be a matrix of the form: 

.

.A

− − 
 

= − 
 − 

5 0 5 0

0 5 5 0

0 0 1

 with eigenvalues , . = − 1 2 5 j0 5  

and  = −3 1 , which are all in the PMI region D . The real eigenvalues of ( ),H A  D  

are .−14 84 , .−8 5694 , .−0 3956 and .−0 2638 . 

It is clear that, as the eigenvalues of A are in the PMI region, the matrix ( ),H A  D  has only 

negative eigenvalues. 



76 Revista Română de Informatică și Automatică, Vol. 34, nr. 4, 67-82, 2024 

https://www.rria.ici.ro   

• Let A be a matrix of the form: 

.

.

.

A

− − 
 

= − 
 − 

5 0 5 0

0 5 5 0

0 0 2 5

 with eigenvalues 

, . = − 1 2 5 j0 5  inside the PMI region D and . = −3 2 5  on the frontier of the PMI  

region D . The real eigenvalues of ( ),H A  D  are . ,  . ,  .− − −8 569 0 971 0 264  and 0 . 

It is clear that, as one eigenvalue of A is on the border of the PMI region, the matrix 

( ),H A  D  has one nil eigenvalue. 

3. Robust D-stability of an uncertain matrix 

This section tackles the asymptotic stability of LTI uncertain systems, which depend on a 

single real parameter of the form: 

( ) ( ) ( ) ( ) 0 1,      = = +x t A x t A A A
 (7) 

where 0 1,    n nA A   and  Ω  . 

The stability of the systems of the form rendered in equation (7) has long attracted the 

attention of many researchers within the framework of linear time invariant (LTI) uncertain 

systems. A summary of the obtained results is given in (Zrida & Bouazizi, 2020) where authors 

crowned the previous research works by an interesting result that provides the exact robust stability 

domain for LTI systems, which polynomially depend on a single scalar parameter. Later, the same 

authors extended this result for robust D -stability in LMI regions (Zrida & Bouazizi, 2022). 

Hereafter the same path is followed to tackle the D -stability of systems expressed as in 

equation (7) in a PMI region D . The following proposition formulates the polynomial dependence 

of ( )( ),H A  D  on the uncertainty parameter  . 

Proposition 

Let ( )( ),H A  D  be the matrix defined by equation (3) with ( ) 0 1A A A = + , then: 

( )( ) 0

1 2

, n
n

n N

H A H H 

 

= +  D  (8) 

with: 

( ) ( ) ( )0 0

0 ,

0

0

, , n p q pq

p q N

i p

j q

i j n

H H A H w i w j Q

 

 

 

+ =

= =  D            (9) 

where the ( )n n  matrix ( )pw k  is the sum of all the words of length p  over the alphabet  0 1,A A  

where 
1A  is repeated exactly k times and ( )0 0 nw I= . 

Proof 

The matrix 
pA  develops to ( ) ( )0 1

0

p
pp k

p

k

A A A w k 
=

= + = . For example, when p=3, it 

becomes that ( ) ( ) ( )3 2 2 2 2
3 0 3 0 1 0 1 0 1 0 3 0 1 1 0 1 1 00 ,   1 ,   2w A w A A A A A A A w A A A A A A A= = + + = + +  and 

( ) 3
3 13w A= . 
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( ) ( )
00

0

p

p q n
pq p q pq

i pn p q

j q

i j n

A A Q w i w j Q

   +

 

+ =

 
   =  
 
 
 
 

 

 

 

( )( ) ( ) ( )
00 , 0

0

,D

p

n
p q pq

i pp q N n p q

j q

i j n

H A w i w j Q 

     +

 

+ =

  
  =  
  
  
  

  

  

 

 

( )( ) ( ) ( ) ( )0

0 , 0

1 0

, ,D D

p

n
p q pq

p q N i p

n p q j q

i j n

H A H A w i w j Q 

   

  +  

+ =

 
 = +  
 
 
 
 

 

 

 

( )( ) ( ) ( ) ( )0

0 ,1 2

0

0

, ,D D

p

n
p q pq

p q Nn N

i p

j q

i j n

H A H A w i w j Q 

  

 

 

+ =

 
 = +  
 
 
 
 
 

 

 

To investigate the D -stability expressed in equation (7), a guardian map is defined (Saydy et 

al., 1990; Zhang et al., 2006) for this region by the determinant of ( )( ),H A  D . By virtue of  

Corollary1, when an eigenvalue of ( )A   reaches the boundary of D, ( )( ), 0H A  =D  is obtained. 

Proposition 2 in (Zrida & Bouazizi, 2020) is used. It states that the determinant of the (2N)th -

degree pencil ( )( ),H A  D coincides with the determinant of the first-degree pencil  d cH H+  

with: 

d

I

I

H

I

H

 
 
 
 =
 
 
 
 0

0 0 0

0 0 0

0 0 0

0 0 0

   and   c

N N

I

H

I

H H H H−

 
 
 
 =
 
 
 − − − − 2 2 1 2 1

0 0 0

0 0 0 0

0 0 0

. 

For the determination of the complete domain to which   must belong so that equation (7) 

is D -stable, the main steps of the algorithm of Zrida & Bouazizi (2020) are mentioned below. 

• After constructing 
dH  and 

cH  by using equation (9), the generalized eigenvalues 

( ),i d cH H  are determined. For these eigenvalues the determinent d i cH H+  is nil, 

which is equivalent to ( )( ), 0H A  =D . 

• If NaN is a generalized eigenvalue of the pencil d cH H+ , then the system is not  

D -stable for all   values. If not, only the N unduplicated, real and finite values of the 

generalized eigenvalues ( ),i d cH H  are considered for the next step. 

• Determine the (N + 1) corresponding open intervals Ii , 𝑖 = 1, 2, ⋯ , (N + 1) resulting 

from the partition of produced by these eigenvalues. 

• For every open interval Ii, select an arbitrary test point 
0  in Ii. If all the real 

eigenvalues of ( )0( ),H A  D  are negative, then 0( )A   is D -stable, and ( )A   is  
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D -stable for the entire open interval Ii. If 
0( )A   is not D -stable, then ( )A   is not  

D -stable for the entire open interval Ii.  

• Form the exact complete robust stability domain by taking the union of all D-stable 

open intervals Ii. 

Example 4:  

a) Consider the PMI region D in Example 3 and let 
0A  and 

1A  be the following matrices: 

.

.A

− − 
 

= − 
 − 

0

5 0 5 0

0 5 5 0

0 0 1

 and 

.

.

.

A

 
 

= − − 
 
 

1

0 0 5 0

0 2 1 0

0 1 0 1

. 

The eigenvalues of A0  are  , . = − 1 2 5 j0 5  and  = −3 1 , which are all in the PMI region D. 

For the D -stability of 
0 1A A+ , it was found that   must be in the following intervals: 

 
   . ,   .     . ,   .     . ,    . − −  − −  − 4 4230 3 6394 2 9105 2 8887 0 6278 0 4256

 

b) Consider the PMI region D in Example 3 and let 
0A  and 

1A  be the following matrices: 

.

.

.

A

− − 
 

= − 
 − 

0

5 0 5 0

0 5 5 0

0 0 2 5

 and 

. .

.

.

A

 
 

= − − − 
 
 

1

1 0 8 0 4

0 2 1 1

0 5 2 1

. 

The eigenvalues of A0  are , . = − 1 2 5 j0 5  inside the PMI region D and . = −3 2 5, on the 

frontier of this region. For the D -stability of 
0 1A A+ , it was found that   must be in the 

following intervals: 

    . ,    .      . ,      .     . ,       . − −   0 6998 0 5865 0 0002 0 7243 3 1111 3 2598  

4. Conclusion 

This paper provided a new condition for the eigenvalues of a real matrix to lie in a region of 

the complex plane, which is described by a polynomial matrix inequality. This description not only 

incorporates LMI, QMI, polynomial regions and others, it also includes regions that are possibly 

disconnected and/or non-convex. This condition checks for the D -stability in such complicated 

regions in an easy and an efficient way, without the need of resolving any Lyapunov-type equation, 

as in (Chilali et al., 1996). Instead, the condition merely consists in computing the eigenvalues of a 

matrix function, which depends upon the system's matrix and the region description parameters. 

This matrix happens to provide a guardian map that can be used to tackle the rather hard problem 

of robust D -stability of single-parameter uncertain systems. These results were only made possible 

through an important extension provided for the classical theorem of Cyparissos Stephanos. 

This paper leads the way into the challenging problem of control synthesis such as pole 

placement in PMI-regions. This remains an open but quite interesting problem. 
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ANNEXES 

 

 

Three algebraic tools 

A1. The Kronecker product  

A1.1 Definition 

Given matrices 
m nA  and 

p qB  , the Kronecker product, also known as a direct 

product or a tensor product of A and B, denoted by   mp nqA B    is defined as the partitioned 

matrix: 

 

111 12

221 22

1 2

 

n

n

m m mn

a Ba B a B

a Ba B a B
A B

a B a B a B

 
 
  =
 
  
 

 

 A B  is seen to be a matrix of order ( )mp nq . It has mn blocks, and the ( )  ,
th

i j  block is 

the matrix ija B  of order ( )p q . It should be noted that    A B B A   . 

A1.2 Some properties and rules for the Kronecker product 

• Let 
m nA  , 

p qB  , n sC  and 
q tD   then: 

•  ( )( )   A B C D AC BD  =   

• For all A and B, ( ) 
T T TA B A B =  . 

• If 
n nA  and

m mB   are symmetric, then  A B  is symmetric. 

• If A and B are nonsingular, then ( ) ( ) ( )
1 1 1

 A B A B
− − −

 =   

• If 
n nA  and 

m mB   are normal, then  A B  is normal. 

• If
n nA   is orthogonal and 

m mB   is orthogonal, then  A B  is orthogonal. 

• Let 
n nA   have a singular value decomposition Σ T

A A AA U V=  and let
m mB   have a 

singular value decomposition Σ .T
B B BB U V=  Then, ( )( )( )  Σ Σ  T T

A B A B A BU U V V    

yields a singular value decomposition of  A B . 

• Let
n nA  have the eigenvalues ,  1,2i i n =  and let

m mB   have the eigenvalues 

,   1,2 .j j m =  Then, the mn eigenvalues of  A B  are 

1 1 1 2 1 2 1 2 2 2, ,     ,  , ,    ,  .m m n m               
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Moreover, if ,     1,2ix i p=  are linearly independent right eigenvectors of A corresponding 

to ( )1,  ,  ,  p p n   , and ,   1, 2jy j q=  are linearly independent right eigenvectors of B 

corresponding to ( )1,  , q q m   , then nm
i jx y   are linearly independent right eigenvectors 

of  A B  corresponding to ,   1,2 ,   1,2i j i p j q  = = . 

 

A2. Schur Decomposition 

A2.1 Existence of the Schur Decomposition 

Let 
n nA    be a square matrix. Then there exists a unitary matrix n nU   and an upper 

triangular matrix 
n nT  , such that 1A UTU−= . Moreover, the eigenvalues of A are on the 

diagonal of T according to their multiplicities. 

A2.2 Existence of the Real Schur Decomposition 

Let 
n nA   be a square matrix with real eigenvalues. Then, there exists a unitary matrix 

n nU   and an upper triangular matrix ,n nT  such that .TA UTU=  Moreover, the 

eigenvalues of A are on the diagonal of T according to their multiplicities. 

 

A3. Stephanos'  Theorem  

Let ( )
,

   , p q
pq

p q

p x y c x y= , with pqc  , be a real polynomial in the two variables x and y 

and let ( )
,

, p q
pq

p q

P A B c A B=   be the associated polynomial of the two matrices
n nA  with 

eigenvalues ( )i A  and 
xm mB  with eigenvalues ( )j B . The eigenvalues of ( ),P A B  consist of 

the nm values ( ) ( )( ),i jp A B   over all possible ordered pairs ( ), ,    1, ,      1, ,i j i n j m= = . 

In particular, the eigenvalues of  A B consist of the values of the nm products 

( ) ( )i jA B  over all ordered pairs ( ), ,    1, ,      1, ,i j i n j m= = . 
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