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Abstract: The rising prevalence of eye disorders has raised concerns, emphasizing the need to accelerate the 

detection of retinal diseases. Early and accurate classification of these conditions is crucial for timely 

diagnosis and effective treatment in order to address critical situations. The recent advancements in retinal 

imaging have enhanced the diagnosis and management of Choroidal Neovascularization (CNV), Diabetic 

Macular Edema (DME) or Drusen and the deep learning-based applications on Optical Coherence 

Tomography (OCT) images have further revolutionized the field by enabling automated, precise, and 

efficient disease classification, paving the way for earlier interventions and improved patient outcomes. This 

study investigates the use of Vision Transformers (ViTs) and Convolutional Neural Networks (CNNs) for 

automated retinal disease classification. Three models were implemented: ViT, DeepViT, and a hybrid model 

combining ResNet50 with ViT, trained and evaluated on a publicly available OCT dataset. The hybrid model 

achieved the highest accuracy of 99.97%, thanks to its ability to capture both local and global features. This 

study underscores the potential of ViTs in medical image analysis and their integration with CNNs to develop 

accurate, robust, and scalable diagnostic tools, showing great promise for clinical applications. 

Keywords: Vision Transformers (ViTs), OCT, Image Classification, Convolutional Neural Networks 

(CNNs), retina. 

Utilizarea potențialului Vision Transformers pentru 

clasificarea îmbunătățită a imaginilor OCT  

Abstract: Prevalența tot mai mare a tulburărilor oculare a stârnit preocupări, subliniind necesitatea 

accelerării detectării bolilor retiniene. Clasificarea timpurie și precisă a acestor afecțiuni este crucială pentru 

diagnosticarea la timp și tratamentul eficace, pentru a aborda situațiile critice. Progresele recente în 

imagistica retiniană au îmbunătățit diagnosticarea și managementul Neovascularizației Coroidale (CNV), 

Edemului Macular Diabetic (DME) sau acumulărilor de tip Drusen, iar aplicațiile bazate pe învățarea 

profundă pe imagini de Tomografie în Coerență Optică (OCT) revoluționează în continuare domeniul, 

permițând clasificarea automată, precisă și eficientă a bolilor, ceea ce contribuie la intervenții mai timpurii și 

la îmbunătățirea rezultatelor pentru pacienți. Acest studiu investighează utilizarea Vision Transformers 

(ViTs) și a Rețelelor Neuronale Convoluționale (CNNs) pentru clasificarea automată a bolilor retiniene. Au 

fost implementate trei modele: ViT, DeepViT și un model hibrid care combină ResNet50 cu ViT, antrenate și 

evaluate pe un set de date OCT disponibil public. Modelul hibrid a atins cea mai mare acuratețe de 99.97%, 

datorită capacității sale de a capta atât caracteristici locale, cât și globale. Acest studiu subliniază potențialul 

ViTs în analiza imaginilor medicale și integrarea lor cu CNNs pentru dezvoltarea unor metode de diagnostic 

precise, robuste și scalabile, arătând un mare potențial pentru aplicații clinice. 

Cuvinte cheie: Vision Transformers, OCT, clasificarea imaginilor, CNN, retina. 

1. Introduction 

In recent years, the realm of medical image analysis has been revolutionized by the onset of 

advanced deep learning (DL) techniques. These innovations promise to improve diagnostic 

accuracy, reduce human error, and improve patient outcomes (Puiu et al., 2021). Among these 

advancements, Vision Transformers (ViTs) (Dosovitskiy et al., 2020) have emerged as a novel 

technology, bringing a new level of precision and efficiency to image classification tasks 

traditionally dominated by Convolutional Neural Networks (CNNs). Originally designed for 

natural language processing (NLP), the Transformer architecture's ability to capture long-range 
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dependencies and contextual relationships has now found compelling applications in the realm of 

computer vision. 

The application of ViTs in medical imaging is particularly promising. Their attention-based 

mechanisms allow for the detailed analysis of complex anatomical structures, surpassing the 

capabilities of conventional methods. This paradigm shift is not just theoretical; it has real-world 

implications for the early detection and treatment of diseases (Dai & Gao, 2021; Gao et al., 2021; 

Mondal et al., 2021). In addition to this, in fields like ophthalmology, where timely diagnosis can 

prevent severe vision loss, the potential impact of ViTs can be profound. 

Optical coherence tomography (OCT) stands out as a revolutionary imaging technique in 

ophthalmology, providing high-resolution, cross-sectional images of the retina. These images have 

become indispensable in the detailed visualization and diagnosis of various retinal conditions, 

significantly enhancing the ability to detect and monitor diseases at an early stage. Among the 

numerous retinal diseases, choroidal neovascularization (CNV), diabetic macular edema (DME), 

and drusen are particularly prevalent and visually debilitating. CNV is associated with abnormal 

blood vessel growth beneath the retina, leading to vision loss if untreated (Shah, n.d.). DME, a 

complication of diabetic retinopathy, involves the accumulation of fluid in the macula through 

microaneurysms that form in the blood vessels, impairing the central vision (Cleveland Clinic, 

n.d.). Drusen, characterized by yellow deposits under the retina, is a common feature of age-related 

macular degeneration (AMD) and can lead to progressive vision impairment (What Are Drusen, 2019). 

Despite the clinical importance of OCT, interpreting these images remains a complex task 

requiring significant expertise. Ophthalmologists must discern subtle changes in retinal structure, a 

process that is both time-consuming and prone to subjective variability. The high volume of images 

that need to be reviewed exacerbates these challenges, increasing the risk of inconsistencies and 

missed diagnoses. 

To overcome these challenges, there is growing interest in integrating DL techniques into the 

analysis of OCT images. ViTs, with their superior ability to model global context and intricate 

details, present a compelling solution. By automating the classification of retinal diseases, ViTs can 

enhance diagnostic accuracy and consistency, providing reliable support to ophthalmologists. 

Several algorithms that leverage the strengths of ViTs and explore hybrid models that 

combine the capabilities of CNNs and ViTs are proposed. This approach aims to enhance the 

accuracy and robustness of retinal disease classification, ultimately contributing to better diagnostic 

tools for ophthalmologists. The contributions are threefold: 

• Applying ViT-based algorithms tailored for CNV, DME, and drusen classification in 

OCT images; 

• Proposal of a hybrid model that integrates the strengths of CNNs and ViTs; 

• Extensive experiments and comparative analyses to validate the effectiveness of the 

methods. 

This paper harnesses the power of ViTs for the classification of retinal diseases from OCT 

images and it is organized as follows: Section 2 presents a comprehensive review of the most 

recent advancements in retinal disease classification using ViTs. Section 3 focuses on the proposed 

approach, detailing the methods employed, the results obtained, and a discussion of the main 

findings and the final section provides the conclusion, summarizing the key outcomes and 

implications of the study.  

2. State of the art 

In the last decade, the applications of DL techniques to the classification of retinal diseases 

using OCT images have gained significant traction. While numerous methods leveraging CNNs 

have been extensively studied and applied for the detection of retinal diseases (Choudhary et al., 

2023; Elkholy & Marzouk, 2024; Nawaz et al., 2023), the focus has increasingly shifted towards 

ViTs due to their promising performance and ability to capture complex patterns in medical 

images. The following state of the art was chosen to include papers that focus on the same dataset 
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that was used in the present paper, ensuring a consistent basis for comparison. Various studies have 

explored different architectures and methodologies to enhance the accuracy and reliability of 

automated diagnostic systems. This section provides a summary of several notable works in this 

domain, highlighting their methodologies, results, and contributions to the field. 

A significant advancement in this domain is presented in the study performed by Jingzhen 

He (He et al., 2023). This research proposes the Swin-Poly Transformer network, which utilizes a 

shifting window partition approach to connect neighbouring non-overlapping windows from the 

previous layer, thereby effectively modelling multi-scale features. Additionally, the Swin-Poly 

Transformer refines cross-entropy by adjusting the significance of polynomial bases, enhancing 

classification performance. This method not only achieves high accuracy, but also generates 

confidence score maps, aiding medical practitioners in understanding the model's decision-making 

process. The results indicate superior performance, with an accuracy of 99.80% and an AUC of 

99.99% on the OCT2017 and OCT-C8 datasets, surpassing the performance of traditional CNNs. 

Another study (Hemalakshmi et al., 2024) proposed a hybrid model named SqueezeNet-ViT 

(SViT), which combines the capabilities of SqueezeNet and ViTs for retinal disease classification 

using OCT images. This hybrid approach leverages both local feature extraction and global 

contextual information, resulting in a more accurate and computationally efficient model. The 

SViT model was evaluated on the OCT2017 dataset for both binary and multiclass classification 

tasks, achieving an overall classification accuracy of 99.90%. 

A study focused on the application of ViT for retinal diseases diagnosis using OCT images 

(Zhou et al., 2023). ViTs, introduced in 2020, utilize a transformer-based architecture entirely for 

feature extraction, differing from traditional CNNs. They employed a ViT model to classify OCT 

images into normal, CNV, Drusen, and DME categories. The results showed that the model 

achieved an accuracy of 95.76%, sensitivity of 95.77%, and specificity of 98.59%. These metrics 

indicate that ViT can outperform traditional CNN models in the classification of retinal diseases, 

offering an effective tool for early diagnosis and treatment planning. 

The advancements in DL and ViT have significantly improved the classification of retinal 

diseases using OCT images. Studies have proved the efficacy of various architectures, including 

interpretable transformers, hybrid models, and standalone ViTs. These models have achieved 

remarkable accuracy and reliability, highlighting their potential to enhance clinical decision-

making and patient care. The present paper further builds on this progress by implementing and 

evaluating the ViT, DeepViT (Zhou et al., 2021), and a hybrid CNN-ViT model, achieving good 

performance metrics and offering insights into their practical applicability in clinical settings. 

Future research should focus on validating these models on diverse datasets, optimizing 

computational efficiency, and integrating them into clinical workflows to fully realize their benefits 

in ophthalmology. 

3. The proposed approach 

3.1. Dataset  

The dataset utilized in this study is sourced from a publicly available repository (Kermany et 

al., 2018) on Kaggle, a prominent data science platform that provides robust tools for researchers 

and developers. It comprises OCT images of the retina, including images of healthy retinas as well 

as those affected by the three distinct retinal diseases: CNV, DME and Drusen. OCT is an 

advanced imaging technique that offers high-resolution cross-sectional views of the human retina. 

Each image in the dataset has been meticulously graded by ophthalmologists, ensuring high-quality 

annotations. The use of light reflection in the capturing process of OCT images contributes to their 

exceptional quality, free from biases towards any specific disease category. The images are 

systematically categorized into four directories corresponding to the labels: CNV, DME, Drusen, 

and Normal. This comprehensive dataset provides a robust foundation for the proposed work, enabling 

the development of models that can accurately classify retinal diseases based on OCT images. 
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The dataset is organized into training, validation and testing subsets to facilitate the 

development and evaluation of DL models. Specifically, the training set consists of 83,484 images, 

the validation set contains 32 images, and the test set includes 968 images, the distribution being 

illustrated in Figure 1.   

To ensure the quality and consistency of the images, several pre-processing steps were 

undertaken, including: 

• Resizing to match the requirements of the neural networks. All images were resized to 

224x224 pixels using bilinear interpolation. This dimension was chosen to balance 

between computational efficiency and the retention of important image details; 

• Normalization to facilitate faster convergence during model training. Pixel values 

were scaled from the original [0, 255] range to [0, 1] by dividing each pixel value by 

255. This normalization ensures that the input values are consistent and helps in 

stabilizing the training process; 

• Data augmentation to increase the diversity of the training dataset and prevent 

overfitting by simulating variations seen in real-world data. The techniques that were 

used include rotation, flipping, scaling, translation. 

These pre-processing steps enhance the model's robustness and generalizability. Despite 

the strengths of this dataset, several potential limitations and challenges must be addressed, such as 

class imbalance, variability in image quality, and the need for extensive pre-processing techniques. 

Moreover, ethical considerations are paramount when using publicly available medical 

datasets, particularly regarding patient privacy and data security. The dataset from Kaggle is 

anonymized, ensuring that no personally identifiable information is included. 

 
a 

 
b 

 

c 

Figure 1. The distribution of the (a) training, (b) validation and (c) testing datasets 
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 The actual numbers of images per class for training, validation and testing are presented in 

the following table (see Table 1). 

Table 1. Number of images for each class for training, validation and testing 

Set CNV DME Drusen Normal 

Training 37,205 11,348 8,616 26,315 

Validation 8 8 8 8 

Testing 242 242 242 242 

 A representative image from each class has been selected for presentation to facilitate clear 

visualization of the differences between each class (see Figure 2). Blue arrows highlight the retinal 

structures associated with each disease. 

 
a 

 
b 

 
c 
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Figure 2. A representative image for: (a) CNV; (b) DME; (c) Drusen and (d) Normal (Kermany et al., 2018) 

3.2. Methods 

This chapter delineates the methodologies employed in the development and evaluation of 

DL models for the classification of retinal diseases using OCT images. The focus is on three 

approaches: ViT, DeepViT, and a hybrid combination of CNNs and ViT. Each technique presents 

distinct advantages and addresses specific challenges in the classification of retinal diseases. To 

provide a comprehensive understanding of ViTs, it is essential to first explore the foundational 

Transformer architecture upon which ViTs are built (Henry et al., n.d.). 

The Transformer architecture, introduced by Vaswani et al. (2017), revolutionized NLP with 

its attention mechanisms that efficiently handle long-range dependencies, outperforming recurrent 

neural networks in tasks like text translation, natural language generation, and speech recognition. 

Central to its design, the architecture employs self-attention mechanisms and point-wise  

feed-forward networks (FFN) to process sequences in parallel, capturing intricate inter-token 

relationships without sequential constraints. Self-attention, the core of this model, uses queries, 

keys and values to focus selectively on different segments of the input sequence, thus enabling 

contextually rich interpretations. This is enhanced by multi-head attention which concurrently 

explores various aspects of the sequence, combining these perspectives to form a comprehensive 

representation (Floroiu & Timisică, 2024). 

Additionally, Transformers utilize positional encodings to imbue sequence order awareness, 

essential for maintaining token positional context. Since its debut, the Transformer has inspired 
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numerous variants like the Bidirectional Encoder Representations from Transformers - BERT and 

Generative Pre-trained Transformer - GPT, significantly advancing NLP by enabling more nuanced 

understanding and generation of text. 

Unlike CNNs, which aggregate global information by stacking multiple convolutional layers 

(e.g., 3 × 3), ViTs leverage the self-attention mechanism to capture spatial patterns and non-local 

dependencies. Several notable transformer-based vision models have been developed, including the 

first version of ViT, DEtection TRansformer (DETR) (Carion et al., 2020), which is an encoder-

decoder-based Transformer architecture that simplifies object detection, or Swin-Transformer (Liu 

et al., 2021), which is based on a hierarchical Transformer computed with shifted windows. It 

restricts self-attention to local windows while allowing cross-window connections, effectively 

handling different visual scales (Floroiu et al., 2024). 

The input images in ViT are divided into a sequence of non-overlapping patches (Figure 3), 

with each patch represented as a vector. Positional information is incorporated into these vectors 

and fed into the transformer's encoder, which includes multi-head self-attention, layer 

normalization, and an FFN. Understanding the variations and advancements in these transformer-

based models can help in the improvement of their application and effectiveness in the domain of 

medical image analysis, particularly for the classification of retinal diseases using OCT images. 

 

Figure 3. ViT (adapted from Dosovitskiy et al., 2020) 

An interesting extension of ViT is DeepViT which is designed to enhance the model's 

capability to capture deeper and more complex patterns in image data. While ViT partitions an 

image into patches and processes these patches through a series of transformer encoders to capture 

global dependencies and spatial relationships, DeepViT incorporates additional layers and 

optimization techniques to improve feature extraction and representation. DeepViT addresses some 

of the limitations of ViT, such as its performance dependency on large-scale datasets, by 

introducing more sophisticated mechanisms for hierarchical feature learning and regularization. 

This makes DeepViT more robust in learning intricate patterns and relationships within the data, 

thereby offering improved accuracy and generalization in the classification of retinal diseases using 

OCT images. The enhancements in DeepViT enable it to better handle the complexities and 

nuances present in medical imaging, leading to more precise and reliable diagnostic outcomes.  

In this study, the vit_pytorch library is utilized to implement Vision Transformer (ViT) and 

DeepViT models. These models were pretrained on the ImageNet dataset, allowing to leverage 

transfer learning for efficient and effective feature extraction. The pretrained models were fine-

tuned on the publicly available OCT dataset to classify CNV, DME and Drusen. This section 

further presents the models that were implemented and evaluated: ViT, DeepViT and the hybrid 

CNN-ViT model. The hybrid model combined ResNet50, a CNN known for its local feature 

extraction capabilities, with ViT, which proved to excel at capturing global features.  
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3.2.1. ViT 

The key parameters for the model include: dimension – 64 (the size of the embedding space 

for each image patch, determining how much information each patch can represent); depth - 8 

transformer blocks (the number of layers in the model, with each layer learning progressively more 

complex features from the input data); heads - 8 attention heads (the number of parallel attention 

mechanisms, allowing the model to focus on different parts of the data simultaneously and capture 

diverse relationships); MLP dimension – 128 (the size of the hidden layers in the FFN within each 

transformer block, enabling the model to learn complex transformations and representations of the 

input data).  

The ViT model processes input images by dividing them into non-overlapping patches, each 

of which is linearly embedded. These patches are then fed into a series of transformer encoders that 

apply multi-head self-attention and feed-forward layers to capture both local and global 

dependencies in the data.  

To address the class imbalance in the training data, class weights were computed based on 

the frequency of each class. These weights were used to create a weighted random sampler, 

ensuring that each class was adequately represented during training and mitigating the risk of the 

model being biased towards the majority class. 

The training parameters were set as follows: batch size – 32; epochs – 20; learning rate - 

0.0003. During training, images were loaded in batches using PyTorch's data loader, with the training 

set utilizing the weighted random sampler. The model was trained using the Adam optimizer and the 

training loop involved feeding batches of images through the model, computing the loss using 

negative log likelihood, backpropagating the gradients, and updating the model weights. 

3.2.2. DeepViT 

The implementation of the DeepViT model follows a similar structure to the ViT model, 

with enhancements designed to improve the model's depth and representational capacity. The 

DeepViT model incorporates additional transformer blocks compared to the standard ViT model. 

This increased depth allows the model to learn more complex and hierarchical features from the 

input data. Each additional transformer block consists of multi-head self-attention layers followed 

by FFN, enabling the model to perform multiple levels of transformation and feature extraction. 

DeepViT also includes improvements to the self-attention mechanism to better capture 

intricate dependencies and relationships within the data, which may involve more sophisticated 

attention head configurations or advanced normalization techniques to stabilize and improve 

learning. The FFNs within each transformer block of the DeepViT model are more extensive, with 

increased MLP dimensions. This allows the model to process the output of the attention mechanism 

with greater complexity, leading to more refined feature representations. 

3.2.3. Hybrid CNN-ViT 

In addition to the ViT and DeepViT models, a hybrid model was also proposed that 

combines the strengths of CNNs and ViTs. This hybrid approach leverages the feature extraction 

capabilities of CNNs with the global context capturing abilities of ViTs to improve the 

classification of retinal diseases using OCT images.  

Model Architecture: The hybrid model consists of two main components: a pre-trained 

ResNet50 CNN and a ViT. The architecture (Figure 4) is designed to extract and refine features 

through the following steps: 

• Feature extraction with ResNet50: The ResNet50 model, pre-trained on ImageNet, is 

used as the initial feature extractor. The final fully connected layer of ResNet50 is 

removed, and the output feature map is passed to the next stage; 

• Transformation to ViT input: The extracted features from ResNet50 are transformed to 
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match the input dimensions required by the ViT model. A linear layer is used to adjust 

the dimensionality of the feature map; 

• ViT processing: The transformed feature map is fed into the ViT, which consists of 

multiple transformer blocks. Each block includes multi-head self-attention mechanisms 

and FFNs, allowing the model to capture complex and global dependencies; 

• Classification head: Finally, a fully connected layer is added to the output of the ViT to 

perform the classification into the desired number of classes (four in this case, 

corresponding to the retinal diseases categories). 

The model was trained using the following parameters: batch size – 32; epochs – 10; 

learning rate - 0.001.  

 

Figure 4. The Hybrid CNN-ViT model approach (adapted from Dosovitskiy et al., 2020) 

3.3. Results 

In this section, the outcomes of the experiments are presented, each approach being carefully 

designed and implemented to leverage the strengths of transformer architectures and CNNs, 

addressing the unique challenges posed by medical image analysis. The performances for each 

model are presented in Table 2, as well as a comprehensive comparison of their effectiveness in 

accurately classifying retinal diseases. Figure 5 also shows the training and validation loss and 

accuracy of the hybrid model. 

Table 2. The performance of the models 

 

Model Accuracy Precision Recall F1-score Time (s) 

ViT 96.80% 96.80% 96.80% 0.96 19627.86 

DeepViT 89.98% 90.03% 89.98% 0.90 24632.96 

Hybrid model 

ResNet50-ViT 
99.97% 99.10% 99.97% 0.99 16220 
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a b 

Figure 5. (a) The training and validation loss and (b) accuracy for the hybrid model 

 

The confusion matrices for the models are described in Figure 6 as they provide a detailed 

evaluation of the models’ performances in classifying the four categories of retinal diseases. 

ViT model: The confusion matrix for ViT is shown in Figure 6a. The ViT model achieved 

an accuracy of 96.80%, with precision, recall, and F1-score all at 96.80%. The matrix indicates that 

the model performs well across all classes, with a few misclassifications observed primarily in the 

Drusen and Normal categories. Specifically, 7 Drusen cases were misclassified as CNV, and 7 

Normal cases were misclassified as Drusen. This suggests that while the ViT model is highly 

effective, there is some room for improvement in distinguishing between these categories. 

DeepViT model: The confusion matrix for the DeepViT model (Figure 6b) illustrates a 

lower overall performance compared to the ViT model, having an accuracy of 89.98%. Precision, 

recall, and F1-score are around 90%. The matrix shows that the DeepViT model has more 

difficulty accurately classifying certain categories. For instance, there are notable misclassifications 

of Drusen as CNV (19 cases) and Normal (17 cases), and DME as CNV (14 cases) and Normal (7 

cases). These results indicate that while the DeepViT model captures some complex patterns, it 

struggles more with inter-class differentiation compared to the ViT model. 

Hybrid Model (ResNet50-ViT): The hybrid model (Figure 6c), which combines ResNet50 

with ViT, achieved the highest performance metrics among the three models. It recorded an 

accuracy of 99.97%, with precision, recall, and F1-score all around 99%. The confusion matrix 

reveals that the hybrid model nearly perfectly classifies all categories, with minimal 

misclassifications. Only 8 Drusen cases were incorrectly classified as CNV. This highlights the 

hybrid model's ability to leverage both CNN and transformer architectures to improve classification 

accuracy significantly. 
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Figure 6. (a) The confusion matrices for: ViT; (b) DeepViT; (c) Hybrid model 

Based on the above-mentioned results, the hybrid model significantly outperforms both the 

ViT and DeepViT models in all key performance metrics. The ViT model, while performing 

admirably, still shows some misclassifications, particularly between Drusen and Normal categories. 

The DeepViT model, despite its complexity and depth, does not perform as well as the ViT model, 

indicating potential overfitting or insufficient learning of inter-class features. The hybrid model's 

integration of CNN and ViT architectures enables it to capture both local and global features more 

effectively, leading to near-perfect classification accuracy and demonstrating its robustness and 

reliability in clinical settings.   

4. Discussions 

In this section, the performance of the algorithms is compared. Each model was evaluated 

based on its ability to classify retinal diseases using OCT images, with key metrics including 

accuracy, precision, recall, F1-score, and training time. 

The ViT model demonstrated robust performance throughout the training process. Over the 

course of 20 epochs, the ViT model showed a significant reduction in average test loss from 0.8046 

to 0.1276. Correspondingly, the accuracy increased from 70.35% in the first epoch to 96.80% by 

the 20th epoch. Precision, recall, and F1-score metrics were all consistently high at 96.80%, 

indicating balanced and reliable performance across all classes.  
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The DeepViT model also exhibited substantial improvements over the 20 epochs of training. 

Starting with a higher initial loss of 1.3724, the model's average test loss decreased to 0.3531 by 

the final epoch. The accuracy improved significantly from 52.69% in the first epoch to 89.98% in 

the 20th epoch. Precision, recall, and F1-score were all around 90%, demonstrating the model's 

effectiveness in classifying retinal diseases.  

The hybrid model, which combines the strengths of CNNs and ViTs, showed remarkable 

performance improvements over a shorter training period of 10 epochs. The training accuracy 

steadily increased, reaching 90.10% by the final epoch, and the validation accuracy consistently 

achieved almost 99% from epoch 2 onwards. The final test accuracy was 99.38%, with precision, 

recall, and F1-score all near 99%. The hybrid model's ability to leverage both CNN's feature 

extraction and ViT's contextual learning capabilities resulted in superior performance metrics. 

Additionally, the classification report (Figure 7) for the hybrid model indicated near-perfect 

classification across all retinal disease’s categories. 

 

Figure 7. The classification report for the hybrid model 

The models were trained on the same GPU setup provided by Kaggle, specifically utilizing 

the T4x2 configuration and to what concerns the training time, the total training time for the ViT 

model was approximately 19627.86 seconds. The DeepViT model, due to its increased complexity 

and depth, required a longer training time of 24632.96 seconds. Despite its superior performance, 

the hybrid model was notably efficient, requiring a shorter training period of just 10 epochs in 

approximately 16220 seconds, highlighting the hybrid model's efficiency in achieving high 

performance without the need for prolonged training. 

Moreover, the following table shows the performance of the methods that dived into the 

classification of retinal diseases using ViT-based architectures, compared to the proposed hybrid 

model that used ResNet50 and ViT. 

Table 3. Performance of other methods compared to the proposed hybrid model 

Paper Method Accuracy (%) 

He, J., 2023 Swin-Poly Transformer 99.80 

Hemalakshmi, G.R., 2024 SqueezeNet + ViT 99.90 

Zhou, Z., 2023 ViT 95.77 

Proposed hybrid model ResNet50 + ViT 99.97 

In comparison to the study by Hemalakshmi, G.R. (2024), which employed SqueezeNet 

alongside ViT for OCT image classification, this study utilized ResNet50 as the CNN component 

of the hybrid model. ResNet50 was selected due to its deeper architecture and superior 

performance in feature extraction tasks, as evidenced by its widespread use in various computer 

vision applications. The primary shortcomings addressed in this work include: 

• Feature extraction: SqueezeNet, while efficient, has a lighter architecture which may not 

capture as complex features as ResNet50. By incorporating ResNet50, our model benefits 

from a deeper network that can extract more nuanced features from OCT images; 

• Classification accuracy: The experimental results from this study demonstrate a 

significant improvement in classification accuracy, with the hybrid model achieving 

99.97% accuracy compared to the previously reported results using SqueezeNet. 
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Across the different models, a notable pattern in misclassification was observed, particularly 

concerning the Drusen category. Drusen was frequently misclassified as either CNV or Normal. 

This trend was evident in both the ViT and DeepViT models. For the ViT model, there were 7 

instances of Drusen misclassified as CNV and 7 as Normal. The DeepViT model showed a higher 

rate of misclassification with 19 Drusen cases misclassified as CNV and 17 as Normal. This 

misclassification issue might be attributed to the subtle and overlapping features between Drusen 

and the other categories, which make it challenging for the models to distinguish them accurately. 

Drusen, being a type of extracellular deposit beneath the retina, shares visual similarities with 

certain characteristics of CNV and Normal, which can lead to confusion during classification. The 

hybrid model demonstrated an improved performance in this regard, with only 8 Drusen cases 

misclassified, underscoring the benefit of combining CNN's feature extraction capabilities with the 

global attention mechanism of ViTs. 

Addressing these misclassifications would require further refinement of the models, 

potentially incorporating additional domain-specific features or enhancing the training dataset to 

better capture the distinguishing characteristics of Drusen. 

Despite the promising results, this study has several limitations. First, the models were 

trained and evaluated on a single dataset, which may not fully represent the diversity and 

complexity of retinal diseases encountered in clinical practice. Consequently, the generalizability 

of the findings to other datasets and real-world scenarios might be limited. Second, the 

computational resources required for training transformer-based models, particularly the DeepViT, 

are substantial. This poses a challenge for implementation in resource-constrained environments, 

such as smaller medical facilities or regions with limited access to high-performance computing 

infrastructure. Third, while the hybrid model demonstrated superior performance, the integration of 

CNN and ViT architectures adds complexity to the model design and training process. This 

complexity might hinder the adoption and scalability of the approach in practice. Lastly, this study 

did not extensively explore hyperparameter tuning or the impact of different data augmentation 

techniques, which could potentially further enhance the performance of the models. Future work 

should address these limitations by evaluating the models on more diverse datasets, optimizing 

computational efficiency, simplifying model architectures, and exploring advanced training 

techniques. 

5. Conclusions 

This study explored the effectiveness of three distinct DL approaches – ViT, DeepViT, and a 

hybrid model combining CNNs with ViT – for the classification of retinal diseases using OCT 

images. The findings demonstrate that each model has unique strengths and limitations, 

contributing valuable insights into their applicability for medical image analysis. 

The ViT model exhibited strong performance with a final accuracy of 96.80%, showcasing 

its capability in handling complex visual tasks. However, the DeepViT model, despite its improved 

depth and complexity, achieved a slightly lower accuracy of 89.98%, reflecting the trade-off 

between model complexity and performance. The hybrid model outperformed both, achieving a 

near-perfect test accuracy of 99.38%, illustrating the efficacy of combining CNN's feature 

extraction capabilities with ViT's contextual learning. 

The comparative analysis revealed that the hybrid model not only excelled in accuracy but 

also in precision, recall and F1-score, all around 99%. This model also demonstrated exceptional 

generalization with consistent validation accuracy of almost 100% from the second epoch onward. 

Despite the superior performance, the hybrid model was more efficient, requiring fewer epochs and 

less time to train, highlighting its practical benefits for clinical applications. 

However, the study also identified several limitations. The reliance on a single dataset may 

limit the generalizability of the findings, and the substantial computational resources required for 

training, particularly for transformer-based models, pose challenges for widespread adoption. 

Additionally, the complexity of integrating CNN and ViT architectures might hinder scalability. 

http://www.rria.ici.ro/
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In conclusion, the research underscores the potential of advanced DL models, particularly 

hybrid architectures, in enhancing the accuracy and reliability of retinal disease classification. 

Future work should focus on addressing the identified limitations by evaluating the models on 

diverse datasets, optimizing computational efficiency, simplifying model designs, and exploring 

advanced training techniques. These efforts will be crucial in advancing the practical application of 

DL in medical image analysis, ultimately improving diagnostic accuracy and patient outcomes in 

ophthalmology. 
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