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Abstract: As the production of electronics increases exponentially each year, the need for them to be able to 

function properly (according to the documentation) is critical. The functional verification process is a 

complex and time consuming step when delivering a proper System-On-a–Chip, which makes it a great 

candidate for different AI implementations and try-outs. In functional verification the UVM Methodology, 

where UVM stands for Universal Verification Methodology is vastly used combined with a hardware 

verification language such as System Verilog. Writing various, elaborated testbenches for difficult 

architectures such as RDMA (Remote Direct Memory Access), USB (Universal Serial Bus), etc. and 

achieving 100% functional coverage is laborious. Here, Generative AI may be able to help to improve this 

process by a considerable amount. This paper aims to present the different trials, aspects and challenges of 

producing an APB UVM testbench with Generative AI, using ChatGPT. 

Keywords: Functional Verification, Generative AI, UVM, SystemVerilog, APB, System-On-a-Chip, 

ChatGPT. 

Experimente folosind AI Generativ pentru generarea 

unui mediu de verificare APB UVM 
Rezumat: Pe măsură ce producția de electronice crește exponențial în fiecare an, necesitatea funcționării 

corecte a acestora este esențială. Procesul de verificare funcțională este complex și consumă mult timp pentru 

livrarea unui System-On-a-Chip, fapt care îl face un candidat ideal pentru implementarea diferitelor 

experimente cu Inteligență Artificială. În verificarea funcțională se folosește Metodologia UVM (Universal 

Verification Methodology) în combinație cu un limbaj de verificare hardware SystemVerilog. Implementarea 

unor medii de verificare, variate, laborioase pentru arhitecturi complexe cum ar fi RDMA (Remote Direct 

Memory Access), USB (Universal Serial Bus) etc. cu 100% acoperire a testelor necesită multă muncă. În 

acest caz AI generativ poate fi de ajutor în facilitarea acestui proces. Acest articol își propune să prezinte 

diferite implementări, experimente și probleme întâmpinate în generarea unui mediu de verificare APB 

(Advanced Peripheral Bus) utilizând  Metodologia UVM cu ajutorul ChatGPT. 

Cuvinte cheie: Verificare funcțională, AI Generativ, UVM, SystemVerilog, APB, System-On-a-Chip, 

ChatGPT.  

 

1. Introduction 

As today’s Integrated Circuits development evolves in both complexity and competence, the 

need for the Integrated Circuits to behave according to documentation is critical in order to ensure 

the safety and correct running of the application. Industries such as aviation, medical and 

automotive need Integrated Circuits which are reliable and robust.  

In general, when developing a System-On-a-Chip, there are several steps needed such as 

defining the specification and need for the system, architecting the system, implementing the 

system in a HDL (Hardware Development Language) such as Verilog or HDL, functional 

verification, physical design, and a lot more processes as presented in the Figure 1. 
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Figure 1. Steps when developing a System-on-a-Chip 

The functional verification process consists of multiple parts such drafting the verification 

plan, environment implementation, tests implementation, debugging, reporting the issues found and 

fixing the regression failures. As design increases in development, it is integrated into the 

verification environment, thus tested for bugs. The verification activity continues even after tape 

out into silicon. Each component must be verified standalone and also it must be ensured that each 

one of them should communicate correctly and efficiently between each other, depending on what 

the system may require. The manner in which functional verification is done is presented in Figure 2 

(Mammo, 2017). 

 

Figure 2. Verification process steps (Mammo, 2017) 

The method presented in Figure 2 is of high complexity and time consuming. The most 

significant part of this process is focused on running, debugging, fixing the tests and also on 

completing coverage. Coverage is a metric that makes sure that the scenarios and configurations of 

the design have been verified using the tests run in the regression. The design itself is a simulation 

on software-based simulators like Cadence INCISIVE, Mentor QuestaSim and Synopsys VCS.    

Even though the simulators have been vastly improving throughout the years, becoming more and 

more faster and implementing advanced debugging capabilities, this is still not good enough for the 

verification process to complete in less time. This is where the aid of Artificial Intelligence might 

play an important role.  

2. AI in functional verification and other research 

Hardware functional verification is done usually in SystemVerilog as the verification plans, 

are usually written in natural language. The translation of these and the implementation of the 

verification environment must be done by the verification engineer.  

Artificial intelligence can greatly improve the verification process in multiple ways. It can 

help in multiple areas of verification:  
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• Coverage completion. Using Artificial Intelligence, the stimuli of the test can be 

changed dinamically depending on which coverage score it is hit. In this paper (Dinu et 

al., 2022), genetic algorithm approaches are used to generate stimuli which are sent to 

the input port of the Device under Test (DUT). This process of obtaining high coverage 

is done by using Python script after the crucial parameters of the genetic algorithms and 

of the DUT functionality are set. The stimuli needed are read by sequences in the 

verification environment from .txt files output by Python. After compiling the 

verification environment and the DUT the simulation is run, and a coverage report is 

provided. Coverage information is taken out of this report and considered as a “fitness” 

metric (Dinu et al., 2022). After each completion, the best stimuli are saved on the drive; 

• Regression clustering and filtering. Various machine learning algorithms can be used to 

filter different regression failures (Dinu & Ogrutan, 2019) and to focus solely on more 

important failures; 

• In documentation, pattern recognition on different images and text. By using these, the 

project verification task can be defined better and more efficient; 

• Generating various testbenches using Generative AI. This approach may be used to 

generate full System Verilog UVM testbenches from scratch using ChatGPT4, in order 

for the engineer just to analyse the code provided and integrate the resulted verification 

environment into the respective system. 

3. State-of-the-Art 

When the transformer neural network architecture was introduced in 2017 a new era in 

machine learning by making available different generative AI pretrained models (foundation 

models) has commenced (Morris, 2023). These models open up possibilities for interaction 

between humans and computers, as well as collaboration with AI, enhancing the capabilities of 

researchers and engineers (Morris, 2023). The LLMs such as ChatGPT3  can offer great support in 

order to help researchers simulate specific environments (Morris, 2022). Even though there are a 

lot of advantages of Generative AI, it still has many limitations such as offensive content, ethical 

content, etc. There is also the problem of the origin of the training materials, whether they are 

correct or not (Bender et al., 2021; Weidinger et al., 2021).  

Large Language Model (LLM) implementations such as ChatGPT have become viable 

options for engineers in order to navigate or generate large, complex, feature rich code (Khurana et 

al., 2024). The recent growing LLMs assistants like ChatGPT (OpenAI, ChatGPT) and (Tom et al., 

2020) supports researchers and engineers to understand various specifications and navigate 

multiple intricate lines of code. Furthermore, what is more interesting is the ability of the LLMs to 

generate code for the application it was asked for. Applying LLMs to software developement has 

gathered attention and wide popularity for general purpose use (Murr, Grainger & Gao, 2023). The 

model’s evaluation has been tried with different tasks such as Parson’s Problems (Reeves et al., 

2023), CS1 Problems (Denny, Kumar, Giacaman et al., 2022), Data science (Lai et al., 2022) and 

competitive programming (Li, 2022). In Murr et al. (2023) the authors highlight four approaches in 

the way the task was asked to be completed by the LLM, in order to asses the apadability of the 

model. The four approaches consist of: 

• Prompt only, where the problem was presented as a statement with a minumum amout 

of information; 

• Prompt with tests, where the problem was given alongside with example testcases; 

• Prompt tests only, where only the tests were given without the body text of the problem; 

• Prompt generic tests, where tests were provided to the LLM but different functions  

were masked. 
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From the point of view of the model performance, Murr et al. (2023) have presented the 

Prompt Tests Only approach was the most efficient (231/315), followed by Prompt with Tests 

(228/315), Prompt Only (222/315) and the last approach Prompt Generic Test (200/315) being the 

least effective. The model that outperformed vastly the other ones was ChatGPT3.5.  

Aside from the text capabilites, with the release of ChatGPT4, new opportunities have 

emerged since the latest release can be fed image into the LLM. This might improve vastly the way 

the LLM can interpret both images and text since now it can correlate between the two. In one 

paper (Johnson et al., 2023)  ChatGPT4 was given a number of images and asked four questions: 

As an AI expert can you identify this image?, What type of image do you think it is?, What is / are 

the usefulness of the  image and the information it conveys? and What useful information can you 

extract from it?. This was aimed in order to assess ChatGPT4‘s capabilities on text and images 

correlated tasks (Johnson et al., 2023). When the LLM was fed and asked the above questions it 

responded correctly regarding what the images were and their respective meaning. When the 

images of a wide spectrum (a chart, an architectural framework for transfer learning model for 

heart signal classification, a dog, a couple of pictures of humans and different plots of machine 

learning dynamics) were being given into the LLM, ChatGPT4 described the images with high 

accuracy defining what they are, gave good suggestions for the questions asked, thus promising 

very optimistic results in the future. Although, some details such as a pen in one pocket in the 

image with a human was missed (Johnson et al., 2023).  

In order to analyse and comprehend the impact of Generative AI on hardware verification it 

is required to conducts tryouts and studies like this one.  

In this paper, the approach using GenerativeAI to generate a System Verilog UVM ARM 

AMBA (Advanced Microcontroller Bus Architecture) APB (Advanced Peripheral Bus) testbench 

from scratch was used, among a short study regarding System Verilog UVM code generation using 

a waveform diagram usually found in official documentation. 

4. UVM Testbench generation from scratch using ChatGPT4 

In these days, the UVM methodology alongside with SystemVerilog is used to define and 

implement testbenches. The usual UVM SystemVerilog testbench consists of:  

• Item, a class which contains user defined data members which represent the protocol 

properties; 

• Driver, which is responsible to drive the data correctly into the DUT, according to the 

protocol rules defined in the specification; 

• Monitor, its role consists of collecting the data from the bus in accordance with the 

protocol rules; 

• Sequencer, a handshake between driver and sequence; 

• Agent, contains the driver, monitor, sequence and item. An agent can be passive or 

active. Passive in the terms of just collecting data with the monitor and activate when it 

is needed to drive data into the DUT; 

• Scoreboard, where the comparison with the actual value from the DUT is compared to 

the expected computed value; 

•  Sequence, is an object which has the duty to create transactions (or items) or initiate 

other sequences. If the sequences create transactions it is a must to run them on a 

sequencer; 

• Test, which is a component that instantiates the sequences if it is the case or just 

overrides the base sequence with the one needed for that specific scenario. 
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These explanations are clarified more on Figure 3.  

 

Figure 3. Generic UVM testbench 

In this paper most of the UVM components were implemented, aside from the scoreboard. 

These components have been generated entirely using ChatGPT4. The only part which had to be 

manually adjusted due to ChatGPT4 limitations is the top.sv file where the signals are connected to 

the DUT and the virtual interface. The components have been generated using general English and 

asking the LLM to provide the code to the output. The code was analysed and corrected by the 

verification engineer. The code was simulated using the open source site EDA Playground which 

provides limited but enough simulation capabilities with all three vendors tools (Cadence INCISIV, 

Questa, VCS). Below are the snippets of the code generated by ChatGPT4.  

  

A)                                                                  B) 

Figure 4 A) and B). Item and driver classes generated by ChatGPT4 

ChatGPT4 was requested to generate a item or transaction class using UVM System Verilog 

which respects the AMBA APB protocol. In the first inquiry of ChatGPT4 the LLM output only 

the signals pwrite, paddr, pdata, prdata and pready, which is incomplete as the pslverr and the 

penable signals are needed. On the second run, as requested the model added the two missing 

signals in the uvm_sequence_item. In the apb_driver class, the model was asked in the same 

manner to provide the code for specifying clearly to use the UVM Methodology and 

SystemVerilog as the verification language. The output was also incomplete as the reset 

functionality of the protocol which is indispensable, was missing. Figure 4 A), B) and Figure 5 A), B) 

both illustrate the transaction and driver classes resulted by using the LLM and correcting the 

missing items. 

The model was guided by the verification engineer to add the respective tasks and correct the 

missing code which it did successfully on a second run. From UVM perspective the UVM Factory 

was missing, this mechanism is important when trying to override components from the other 

classes, by not modifying any other line of code.   
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A)                                                         B) 

Figure 5 A) and B). UVM Driver class 

For completing this APB UVM testbench a sequence was requested by the verification 

engineer to the model in order to be able to use this sequence in a test. The sequences instantiates 

an APB transaction item, creates it in a for loop for ten iterations, sets the pwrite signal to 1 

signalling a write transfer and randomizing the data written for each iteration.  

 

Figure 6. UVM Sequence 

The sequence in Figure 6 was used in a UVM APB test generated by a LLM. The test 

created the sequence in the build_phase() function, created, randomized and started it in the 

run_phase() task of the class. The APB sequencer was used to start the sequence itself. After 

running the simulation, the waves were dumped in order to analyse it and ensure the correctitude of 

the testbench. Figure 7 shows the waveforms. Regarding the design part of this study, it was also 

generated using ChatGPT4, by asking the model to provide an APB module. 

 

Figure 7.  Results of the ChatGPT generated UVM testbench 

The only file that was needed to be created by hand by the engineer was the top.sv file. 

ChatGPT4 can replace or correct name quite easily, but as needed in a top.sv file it cannot connect 

the interface to the virtual interface, uses wrongly and uncompilable code for uvm_set_config_db() 

and also for the run_test() method. Thus, it is a must for the moment to have the top.sv file edited 

manually. The Verilog implementation was also done by ChatGPT4 as requested by the engineer. 

At a first try, the LLM just output the code of the APB module, though missing the pslverr and 

penable implementations, but when retrying and asking specifically for these two signals to be 

added and driven, the model had no issue in doing so. 

As a conclusion to this chapter, it has been proved that ChatGPT4 can generate a fully 

functional verification environment with respect to the protocol that was asked for. Instead of 

http://www.rria.ici.ro/


Romanian Journal of Information Technology and Automatic Control, Vol. 34, No. 2, 75-84, 2024 81 

 www.rria.ici.ro 

spending a half a day on implementing the above testbench, using ChatGPT4 time spent reduced to 

about two hours (50% less spent time) in which most of it was spent on analysing the output and 

running it on a free platform which has some impediments as opposed to running on a dedicated 

environment. Although, the model can generate the code quite effective and correctly, it is still 

mandatory for the verification engineer or the researcher to supervise and correct possibile errors 

and missing items such as presented above. This problem can only escalate when larger and more 

complex designs are taken into consideration. 

5. Generating various components of a UVM testbench starting from a 

protocol diagram 

In this study, a protocol image was fed to the model and asked to provide the respective 

UVM Driver. This approach is useful when adding an individual UVM component in an already 

existing testbench. This way, the code is already generate using either an image, diagram or maybe 

waveforms and it will be imported into the existing testbench. This approach saves valuable time, 

instead of writing the UVM component from scratch. For simplicity reasons, an image of an APB 

write transaction was used in order to ask the model to generate the UVM Driver with respect to 

the protocol rules provided by the image. Figure 8 contains the image used and Figure 9 A), B) the 

resulted code. 

 

Figure 8. APB Write transaction waveforms (ARM, 2023) 

 

       

A)                                                     B) 

Figure 9 A) and B). Generated classes 

When asked for the output, the LLM was not provided with any information regarding to the 

protocol rules, which protocol it is or other details, but the LLM understood that it is the ARM 

APB protocol. Some challenges that rose when using only the waveform is that, inside the 

drive_apb_transaction() method, instead of the #10 delays the LLM must be asked to synchronize 

with the protocol clock (pclk) as an alternative of just adding arbitrarily delays. If used such, these 

delays might generate desynchronizations and errors if the class is integrated in the environment 

and the environment itself is integrated into a higher level SoC environment. Moreover, such faults 
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will cause errors which might be hard to trace and debug. The verification engineer must 

thoroughly understand and analyse the code given by the LLM for the number of errors to be 

diminished.  

This approach is valuable when new change requests are added in the documentation and 

then into the RTL design. Change requests are usually modifications added into the documentation 

and the RTL design which can change slightly or more the behaviour of the RTL. The Digital 

Design engineer can provide in the documentation or using any of the simulators (CADENCE 

INCISIV, Questa VCS and Siemens) a correct waveform of what a new transfer must look like. 

Thus, the verification engineer can feed these waveforms into ChatGPT4 and generate the updates 

required for the verification environment.  

6. Conclusions 

With exponential growth in electronic production, ensuring their proper operation as 

specified in the documentation becomes crucial. The functional verification phase is a complex and 

time-consuming aspect of System-on-a-Chip development, making it an ideal area for applying and 

experimenting with various AI technologies. The Universal Verification Methodology (UVM) is 

commonly used in this phase, alongside a hardware verification language as System Verilog. 

Implementing difficult and tricky testbenches for protocols such as RDMA, USB etc. and 

achieving 100% functional coverage is challenging. This paper aimed to prove the usage of LLMs 

such as ChatGPT4 in code generation of a fully functional UVM APB testbench and using images 

to generate protocol specific UVM components.  

For the first approach, in this paper an UVM APB testbench was generated using ChatGPT4. 

The LLM was asked to provide the item, driver, monitor, sequencer, agent, scoreboard, sequence 

and test for the UVM APB Testbench and the verification engineer being a supervisor to correct the 

results output by the LLMs. The missing software constructs were added by ChatGPT4 when 

requesting it explicitly by the engineer. The top module itself was not generated ChatGPT4, as 

when trying to do so, the LLM just output generic top modules and when asked to modify certain 

interfaces and parameters it was not accurate resulting in different changes than expected. Thus, it 

is more convenient for the functional engineering process to manually configure the top module 

instead of relying on ChatGPT4. The RTL implementation of the APB modules was also done 

using ChatGPT4, albeit on a first run the LLM did not provide any implementation for the pslverr 

and penable signals. On a second run and requesting explicitly to be added the model added the 

respective implementation for the signals. Time spent on analysing the outputs and running the 

code on a free platform was about two hours, as compared to four hours which would’ve taken to 

implement each class by hand, consequently reducing the time by 50%. Another note might be that 

most of the two hours were spent on configuring and running the code on the free platform, which 

in a dedicated environment would take even less time. 

On the second approach, a picture was given to the model and asked to generate a UVM 

driver class for it. It was not specified what protocol it is and what are the rules of the protocol, but 

the LLM realized it is an APB write transaction and lightly implemented the driver class as asked. 

In this approach, the engineer when provided with different waveforms can give these to the model 

and generate the classes need, instead of implementing them one by one. This will prove as a great 

advantage when having to implement countless protocols and classes as this method will reduce 

time spent on writing respective classes. The focus will shift on correcting and verifying the output 

that it corresponds to what is necessary. 

These two approaches can decrease time spent on functional verification. The first approach, 

where an UVM APB testbench is developed from scratch might be more suitable when wanting to 

have more control of what the LLM is asked to output. By using a text-based approach in which the 

LLM is asked specifically for the classes involved, the methodology used and the programming 

language, the verification engineer might have more control and more less time spent correcting 

ChatGPT4. This approach might be more viable when developing brand new verification 

environments, where there are a lot of configurations, details and scenarios needed. The second 
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approach, using a protocol picture (in this case an ARM APB Write transfer) which is present in 

many documentations, can prove very useful when change requests are needed. This means the 

module will suffer changes either trivial or substantial. By using the image present usually in any 

module or protocol specification, the engineer can quickly add new classes or correct the existing 

ones in the verification environment with respect the new changes. The verification engineer must 

be sure that the image provided to the LLM is correct and its output is also accurate. If there are 

any errors either ChatGPT4 can be asked using general English to correct the errors, or the 

verification engineer can do it manually.  

At this moment there is an absence of Artificial Intelligence research used in functional 

verification, despite the rapid advances in AI. Therefore, it is a clear opportunity and demand for 

further research to integrate AI in the functional verification process. Such papers, may be able to 

alter dramatically the way tasks are conducted, providing numerous benefits from which the most 

important is reducing the time spent on verification through various techniques using different 

techniques for instance testbench generation, stimuli generation, etc. 

This paper aimed to prove, on a small testbench, the benefits and possible ChatGPT4 use 

cases for the functional verification process. As presented above, two approaches were used by the 

verification engineer, both with very good results and decreasing time spent on the project.  
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