
Romanian Journal of Information Technology and Automatic Control, Vol. 34, No. 2, 75-84, 2024 75

https://doi.org/10.33436/v34i2y202406

Trials of using Generative AI for

APB UVM testbench generation
Diana DRANGA

Faculty of Electronics, Telecommunication, and Information Technology,

National University of Science and Technology Politehnica Bucharest, Romania

dranga.diana4@gmail.com

Abstract: As the production of electronics increases exponentially each year, the need for them to be able to

function properly (according to the documentation) is critical. The functional verification process is a

complex and time consuming step when delivering a proper System-On-a–Chip, which makes it a great

candidate for different AI implementations and try-outs. In functional verification the UVM Methodology,

where UVM stands for Universal Verification Methodology is vastly used combined with a hardware

verification language such as System Verilog. Writing various, elaborated testbenches for difficult

architectures such as RDMA (Remote Direct Memory Access), USB (Universal Serial Bus), etc. and

achieving 100% functional coverage is laborious. Here, Generative AI may be able to help to improve this

process by a considerable amount. This paper aims to present the different trials, aspects and challenges of

producing an APB UVM testbench with Generative AI, using ChatGPT.

Keywords: Functional Verification, Generative AI, UVM, SystemVerilog, APB, System-On-a-Chip,

ChatGPT.

Experimente folosind AI Generativ pentru generarea

unui mediu de verificare APB UVM
Rezumat: Pe măsură ce producția de electronice crește exponențial în fiecare an, necesitatea funcționării

corecte a acestora este esențială. Procesul de verificare funcțională este complex și consumă mult timp pentru

livrarea unui System-On-a-Chip, fapt care îl face un candidat ideal pentru implementarea diferitelor

experimente cu Inteligență Artificială. În verificarea funcțională se folosește Metodologia UVM (Universal

Verification Methodology) în combinație cu un limbaj de verificare hardware SystemVerilog. Implementarea

unor medii de verificare, variate, laborioase pentru arhitecturi complexe cum ar fi RDMA (Remote Direct

Memory Access), USB (Universal Serial Bus) etc. cu 100% acoperire a testelor necesită multă muncă. În

acest caz AI generativ poate fi de ajutor în facilitarea acestui proces. Acest articol își propune să prezinte

diferite implementări, experimente și probleme întâmpinate în generarea unui mediu de verificare APB

(Advanced Peripheral Bus) utilizând Metodologia UVM cu ajutorul ChatGPT.

Cuvinte cheie: Verificare funcțională, AI Generativ, UVM, SystemVerilog, APB, System-On-a-Chip,

ChatGPT.

1. Introduction

As today’s Integrated Circuits development evolves in both complexity and competence, the

need for the Integrated Circuits to behave according to documentation is critical in order to ensure

the safety and correct running of the application. Industries such as aviation, medical and

automotive need Integrated Circuits which are reliable and robust.

In general, when developing a System-On-a-Chip, there are several steps needed such as

defining the specification and need for the system, architecting the system, implementing the

system in a HDL (Hardware Development Language) such as Verilog or HDL, functional

verification, physical design, and a lot more processes as presented in the Figure 1.

mailto:dranga.diana4@gmail

76 Revista Română de Informatică și Automatică, vol. 34, nr. 2, 75-84, 2024

www.rria.ici.ro

Figure 1. Steps when developing a System-on-a-Chip

The functional verification process consists of multiple parts such drafting the verification

plan, environment implementation, tests implementation, debugging, reporting the issues found and

fixing the regression failures. As design increases in development, it is integrated into the

verification environment, thus tested for bugs. The verification activity continues even after tape

out into silicon. Each component must be verified standalone and also it must be ensured that each

one of them should communicate correctly and efficiently between each other, depending on what

the system may require. The manner in which functional verification is done is presented in Figure 2

(Mammo, 2017).

Figure 2. Verification process steps (Mammo, 2017)

The method presented in Figure 2 is of high complexity and time consuming. The most

significant part of this process is focused on running, debugging, fixing the tests and also on

completing coverage. Coverage is a metric that makes sure that the scenarios and configurations of

the design have been verified using the tests run in the regression. The design itself is a simulation

on software-based simulators like Cadence INCISIVE, Mentor QuestaSim and Synopsys VCS.

Even though the simulators have been vastly improving throughout the years, becoming more and

more faster and implementing advanced debugging capabilities, this is still not good enough for the

verification process to complete in less time. This is where the aid of Artificial Intelligence might

play an important role.

2. AI in functional verification and other research

Hardware functional verification is done usually in SystemVerilog as the verification plans,

are usually written in natural language. The translation of these and the implementation of the

verification environment must be done by the verification engineer.

Artificial intelligence can greatly improve the verification process in multiple ways. It can

help in multiple areas of verification:

http://www.rria.ici.ro/

Romanian Journal of Information Technology and Automatic Control, Vol. 34, No. 2, 75-84, 2024 77

 www.rria.ici.ro

• Coverage completion. Using Artificial Intelligence, the stimuli of the test can be

changed dinamically depending on which coverage score it is hit. In this paper (Dinu et

al., 2022), genetic algorithm approaches are used to generate stimuli which are sent to

the input port of the Device under Test (DUT). This process of obtaining high coverage

is done by using Python script after the crucial parameters of the genetic algorithms and

of the DUT functionality are set. The stimuli needed are read by sequences in the

verification environment from .txt files output by Python. After compiling the

verification environment and the DUT the simulation is run, and a coverage report is

provided. Coverage information is taken out of this report and considered as a “fitness”

metric (Dinu et al., 2022). After each completion, the best stimuli are saved on the drive;

• Regression clustering and filtering. Various machine learning algorithms can be used to

filter different regression failures (Dinu & Ogrutan, 2019) and to focus solely on more

important failures;

• In documentation, pattern recognition on different images and text. By using these, the

project verification task can be defined better and more efficient;

• Generating various testbenches using Generative AI. This approach may be used to

generate full System Verilog UVM testbenches from scratch using ChatGPT4, in order

for the engineer just to analyse the code provided and integrate the resulted verification

environment into the respective system.

3. State-of-the-Art

When the transformer neural network architecture was introduced in 2017 a new era in

machine learning by making available different generative AI pretrained models (foundation

models) has commenced (Morris, 2023). These models open up possibilities for interaction

between humans and computers, as well as collaboration with AI, enhancing the capabilities of

researchers and engineers (Morris, 2023). The LLMs such as ChatGPT3 can offer great support in

order to help researchers simulate specific environments (Morris, 2022). Even though there are a

lot of advantages of Generative AI, it still has many limitations such as offensive content, ethical

content, etc. There is also the problem of the origin of the training materials, whether they are

correct or not (Bender et al., 2021; Weidinger et al., 2021).

Large Language Model (LLM) implementations such as ChatGPT have become viable

options for engineers in order to navigate or generate large, complex, feature rich code (Khurana et

al., 2024). The recent growing LLMs assistants like ChatGPT (OpenAI, ChatGPT) and (Tom et al.,

2020) supports researchers and engineers to understand various specifications and navigate

multiple intricate lines of code. Furthermore, what is more interesting is the ability of the LLMs to

generate code for the application it was asked for. Applying LLMs to software developement has

gathered attention and wide popularity for general purpose use (Murr, Grainger & Gao, 2023). The

model’s evaluation has been tried with different tasks such as Parson’s Problems (Reeves et al.,

2023), CS1 Problems (Denny, Kumar, Giacaman et al., 2022), Data science (Lai et al., 2022) and

competitive programming (Li, 2022). In Murr et al. (2023) the authors highlight four approaches in

the way the task was asked to be completed by the LLM, in order to asses the apadability of the

model. The four approaches consist of:

• Prompt only, where the problem was presented as a statement with a minumum amout

of information;

• Prompt with tests, where the problem was given alongside with example testcases;

• Prompt tests only, where only the tests were given without the body text of the problem;

• Prompt generic tests, where tests were provided to the LLM but different functions

were masked.

78 Revista Română de Informatică și Automatică, vol. 34, nr. 2, 75-84, 2024

www.rria.ici.ro

From the point of view of the model performance, Murr et al. (2023) have presented the

Prompt Tests Only approach was the most efficient (231/315), followed by Prompt with Tests

(228/315), Prompt Only (222/315) and the last approach Prompt Generic Test (200/315) being the

least effective. The model that outperformed vastly the other ones was ChatGPT3.5.

Aside from the text capabilites, with the release of ChatGPT4, new opportunities have

emerged since the latest release can be fed image into the LLM. This might improve vastly the way

the LLM can interpret both images and text since now it can correlate between the two. In one

paper (Johnson et al., 2023) ChatGPT4 was given a number of images and asked four questions:

As an AI expert can you identify this image?, What type of image do you think it is?, What is / are

the usefulness of the image and the information it conveys? and What useful information can you

extract from it?. This was aimed in order to assess ChatGPT4‘s capabilities on text and images

correlated tasks (Johnson et al., 2023). When the LLM was fed and asked the above questions it

responded correctly regarding what the images were and their respective meaning. When the

images of a wide spectrum (a chart, an architectural framework for transfer learning model for

heart signal classification, a dog, a couple of pictures of humans and different plots of machine

learning dynamics) were being given into the LLM, ChatGPT4 described the images with high

accuracy defining what they are, gave good suggestions for the questions asked, thus promising

very optimistic results in the future. Although, some details such as a pen in one pocket in the

image with a human was missed (Johnson et al., 2023).

In order to analyse and comprehend the impact of Generative AI on hardware verification it

is required to conducts tryouts and studies like this one.

In this paper, the approach using GenerativeAI to generate a System Verilog UVM ARM

AMBA (Advanced Microcontroller Bus Architecture) APB (Advanced Peripheral Bus) testbench

from scratch was used, among a short study regarding System Verilog UVM code generation using

a waveform diagram usually found in official documentation.

4. UVM Testbench generation from scratch using ChatGPT4

In these days, the UVM methodology alongside with SystemVerilog is used to define and

implement testbenches. The usual UVM SystemVerilog testbench consists of:

• Item, a class which contains user defined data members which represent the protocol

properties;

• Driver, which is responsible to drive the data correctly into the DUT, according to the

protocol rules defined in the specification;

• Monitor, its role consists of collecting the data from the bus in accordance with the

protocol rules;

• Sequencer, a handshake between driver and sequence;

• Agent, contains the driver, monitor, sequence and item. An agent can be passive or

active. Passive in the terms of just collecting data with the monitor and activate when it

is needed to drive data into the DUT;

• Scoreboard, where the comparison with the actual value from the DUT is compared to

the expected computed value;

• Sequence, is an object which has the duty to create transactions (or items) or initiate

other sequences. If the sequences create transactions it is a must to run them on a

sequencer;

• Test, which is a component that instantiates the sequences if it is the case or just

overrides the base sequence with the one needed for that specific scenario.

http://www.rria.ici.ro/

Romanian Journal of Information Technology and Automatic Control, Vol. 34, No. 2, 75-84, 2024 79

 www.rria.ici.ro

These explanations are clarified more on Figure 3.

Figure 3. Generic UVM testbench

In this paper most of the UVM components were implemented, aside from the scoreboard.

These components have been generated entirely using ChatGPT4. The only part which had to be

manually adjusted due to ChatGPT4 limitations is the top.sv file where the signals are connected to

the DUT and the virtual interface. The components have been generated using general English and

asking the LLM to provide the code to the output. The code was analysed and corrected by the

verification engineer. The code was simulated using the open source site EDA Playground which

provides limited but enough simulation capabilities with all three vendors tools (Cadence INCISIV,

Questa, VCS). Below are the snippets of the code generated by ChatGPT4.

A) B)

Figure 4 A) and B). Item and driver classes generated by ChatGPT4

ChatGPT4 was requested to generate a item or transaction class using UVM System Verilog

which respects the AMBA APB protocol. In the first inquiry of ChatGPT4 the LLM output only

the signals pwrite, paddr, pdata, prdata and pready, which is incomplete as the pslverr and the

penable signals are needed. On the second run, as requested the model added the two missing

signals in the uvm_sequence_item. In the apb_driver class, the model was asked in the same

manner to provide the code for specifying clearly to use the UVM Methodology and

SystemVerilog as the verification language. The output was also incomplete as the reset

functionality of the protocol which is indispensable, was missing. Figure 4 A), B) and Figure 5 A), B)

both illustrate the transaction and driver classes resulted by using the LLM and correcting the

missing items.

The model was guided by the verification engineer to add the respective tasks and correct the

missing code which it did successfully on a second run. From UVM perspective the UVM Factory

was missing, this mechanism is important when trying to override components from the other

classes, by not modifying any other line of code.

80 Revista Română de Informatică și Automatică, vol. 34, nr. 2, 75-84, 2024

www.rria.ici.ro

A) B)

Figure 5 A) and B). UVM Driver class

For completing this APB UVM testbench a sequence was requested by the verification

engineer to the model in order to be able to use this sequence in a test. The sequences instantiates

an APB transaction item, creates it in a for loop for ten iterations, sets the pwrite signal to 1

signalling a write transfer and randomizing the data written for each iteration.

Figure 6. UVM Sequence

The sequence in Figure 6 was used in a UVM APB test generated by a LLM. The test

created the sequence in the build_phase() function, created, randomized and started it in the

run_phase() task of the class. The APB sequencer was used to start the sequence itself. After

running the simulation, the waves were dumped in order to analyse it and ensure the correctitude of

the testbench. Figure 7 shows the waveforms. Regarding the design part of this study, it was also

generated using ChatGPT4, by asking the model to provide an APB module.

Figure 7. Results of the ChatGPT generated UVM testbench

The only file that was needed to be created by hand by the engineer was the top.sv file.

ChatGPT4 can replace or correct name quite easily, but as needed in a top.sv file it cannot connect

the interface to the virtual interface, uses wrongly and uncompilable code for uvm_set_config_db()

and also for the run_test() method. Thus, it is a must for the moment to have the top.sv file edited

manually. The Verilog implementation was also done by ChatGPT4 as requested by the engineer.

At a first try, the LLM just output the code of the APB module, though missing the pslverr and

penable implementations, but when retrying and asking specifically for these two signals to be

added and driven, the model had no issue in doing so.

As a conclusion to this chapter, it has been proved that ChatGPT4 can generate a fully

functional verification environment with respect to the protocol that was asked for. Instead of

http://www.rria.ici.ro/

Romanian Journal of Information Technology and Automatic Control, Vol. 34, No. 2, 75-84, 2024 81

 www.rria.ici.ro

spending a half a day on implementing the above testbench, using ChatGPT4 time spent reduced to

about two hours (50% less spent time) in which most of it was spent on analysing the output and

running it on a free platform which has some impediments as opposed to running on a dedicated

environment. Although, the model can generate the code quite effective and correctly, it is still

mandatory for the verification engineer or the researcher to supervise and correct possibile errors

and missing items such as presented above. This problem can only escalate when larger and more

complex designs are taken into consideration.

5. Generating various components of a UVM testbench starting from a

protocol diagram

In this study, a protocol image was fed to the model and asked to provide the respective

UVM Driver. This approach is useful when adding an individual UVM component in an already

existing testbench. This way, the code is already generate using either an image, diagram or maybe

waveforms and it will be imported into the existing testbench. This approach saves valuable time,

instead of writing the UVM component from scratch. For simplicity reasons, an image of an APB

write transaction was used in order to ask the model to generate the UVM Driver with respect to

the protocol rules provided by the image. Figure 8 contains the image used and Figure 9 A), B) the

resulted code.

Figure 8. APB Write transaction waveforms (ARM, 2023)

A) B)

Figure 9 A) and B). Generated classes

When asked for the output, the LLM was not provided with any information regarding to the

protocol rules, which protocol it is or other details, but the LLM understood that it is the ARM

APB protocol. Some challenges that rose when using only the waveform is that, inside the

drive_apb_transaction() method, instead of the #10 delays the LLM must be asked to synchronize

with the protocol clock (pclk) as an alternative of just adding arbitrarily delays. If used such, these

delays might generate desynchronizations and errors if the class is integrated in the environment

and the environment itself is integrated into a higher level SoC environment. Moreover, such faults

82 Revista Română de Informatică și Automatică, vol. 34, nr. 2, 75-84, 2024

www.rria.ici.ro

will cause errors which might be hard to trace and debug. The verification engineer must

thoroughly understand and analyse the code given by the LLM for the number of errors to be

diminished.

This approach is valuable when new change requests are added in the documentation and

then into the RTL design. Change requests are usually modifications added into the documentation

and the RTL design which can change slightly or more the behaviour of the RTL. The Digital

Design engineer can provide in the documentation or using any of the simulators (CADENCE

INCISIV, Questa VCS and Siemens) a correct waveform of what a new transfer must look like.

Thus, the verification engineer can feed these waveforms into ChatGPT4 and generate the updates

required for the verification environment.

6. Conclusions

With exponential growth in electronic production, ensuring their proper operation as

specified in the documentation becomes crucial. The functional verification phase is a complex and

time-consuming aspect of System-on-a-Chip development, making it an ideal area for applying and

experimenting with various AI technologies. The Universal Verification Methodology (UVM) is

commonly used in this phase, alongside a hardware verification language as System Verilog.

Implementing difficult and tricky testbenches for protocols such as RDMA, USB etc. and

achieving 100% functional coverage is challenging. This paper aimed to prove the usage of LLMs

such as ChatGPT4 in code generation of a fully functional UVM APB testbench and using images

to generate protocol specific UVM components.

For the first approach, in this paper an UVM APB testbench was generated using ChatGPT4.

The LLM was asked to provide the item, driver, monitor, sequencer, agent, scoreboard, sequence

and test for the UVM APB Testbench and the verification engineer being a supervisor to correct the

results output by the LLMs. The missing software constructs were added by ChatGPT4 when

requesting it explicitly by the engineer. The top module itself was not generated ChatGPT4, as

when trying to do so, the LLM just output generic top modules and when asked to modify certain

interfaces and parameters it was not accurate resulting in different changes than expected. Thus, it

is more convenient for the functional engineering process to manually configure the top module

instead of relying on ChatGPT4. The RTL implementation of the APB modules was also done

using ChatGPT4, albeit on a first run the LLM did not provide any implementation for the pslverr

and penable signals. On a second run and requesting explicitly to be added the model added the

respective implementation for the signals. Time spent on analysing the outputs and running the

code on a free platform was about two hours, as compared to four hours which would’ve taken to

implement each class by hand, consequently reducing the time by 50%. Another note might be that

most of the two hours were spent on configuring and running the code on the free platform, which

in a dedicated environment would take even less time.

On the second approach, a picture was given to the model and asked to generate a UVM

driver class for it. It was not specified what protocol it is and what are the rules of the protocol, but

the LLM realized it is an APB write transaction and lightly implemented the driver class as asked.

In this approach, the engineer when provided with different waveforms can give these to the model

and generate the classes need, instead of implementing them one by one. This will prove as a great

advantage when having to implement countless protocols and classes as this method will reduce

time spent on writing respective classes. The focus will shift on correcting and verifying the output

that it corresponds to what is necessary.

These two approaches can decrease time spent on functional verification. The first approach,

where an UVM APB testbench is developed from scratch might be more suitable when wanting to

have more control of what the LLM is asked to output. By using a text-based approach in which the

LLM is asked specifically for the classes involved, the methodology used and the programming

language, the verification engineer might have more control and more less time spent correcting

ChatGPT4. This approach might be more viable when developing brand new verification

environments, where there are a lot of configurations, details and scenarios needed. The second

http://www.rria.ici.ro/

Romanian Journal of Information Technology and Automatic Control, Vol. 34, No. 2, 75-84, 2024 83

 www.rria.ici.ro

approach, using a protocol picture (in this case an ARM APB Write transfer) which is present in

many documentations, can prove very useful when change requests are needed. This means the

module will suffer changes either trivial or substantial. By using the image present usually in any

module or protocol specification, the engineer can quickly add new classes or correct the existing

ones in the verification environment with respect the new changes. The verification engineer must

be sure that the image provided to the LLM is correct and its output is also accurate. If there are

any errors either ChatGPT4 can be asked using general English to correct the errors, or the

verification engineer can do it manually.

At this moment there is an absence of Artificial Intelligence research used in functional

verification, despite the rapid advances in AI. Therefore, it is a clear opportunity and demand for

further research to integrate AI in the functional verification process. Such papers, may be able to

alter dramatically the way tasks are conducted, providing numerous benefits from which the most

important is reducing the time spent on verification through various techniques using different

techniques for instance testbench generation, stimuli generation, etc.

This paper aimed to prove, on a small testbench, the benefits and possible ChatGPT4 use

cases for the functional verification process. As presented above, two approaches were used by the

verification engineer, both with very good results and decreasing time spent on the project.

REFERENCES

ARM, (2023) AMBA APB Protocol Specification. https://developer.arm.com/documentation/

ihi0024/latest/ [Accessed on January 2024].

Bender, M. E., Gebru, T., McMillan-Major, A. & Shmitchell, S. (2021) On the Dangers of

Stochastic Parrots: Can Language Models Be Too Big? Proceedings of the 2021 ACM Conference

on Fairness, Accountability, and Transparency. FAccT ’21, March 3-10, 2021, Virtual Event,

Canada. New York, NY, United States, Association for Computing Machinery. pp. 610-623

[Accessed on March 2024].

Denny, P., Kumar, V., Giacaman, N. et al. (2022) Conversing with copilot: Exploring Prompt

Engineering for Solving CS1 Problems Using Natural Language. To be published in Human-

Computer Interaction. https://arxiv.org/abs/2210.15157 [Accessed on March 2024].

Dinu, A. & Ogrutan, P. L. (2019) Opportunities of Using Artificial Intelligence in Hardware

Verification. In: 2019 IEEE 25th International Symposium for Design and Technology in

Electronic Packaging (SIITME), October 23-26, 2019, Cluj-Napoca, Romania. pp. 224-227, doi:

10.1109/SIIME47687.2019.8990751 [Accessed on March 2024].

Dinu, A., Danciu, G. M., Ogrutan, P. L. (2022) Cost-Efficient Approaches for Fulfillment of

Functional Coverage during Verification of Digital Designs. Micromachines. 13(5), 691.

doi:10.3390/mi13050691.

Johnson, O. V., Alyasiri, O. M., Akhtom, Dua'A & Johnson, O. E. (2023) Image Analysis through

the lens of ChatGPT-4. Journal of Applied Artificial Intelligence. 4(2), 32-46.

doi:10.48185/jaai.v4i2.870.

Khurana, A., Subramonyam, H. & Chilana, P. K. (2024) Why and When LLM-Based Assistants

Can Go Wrong: Investigating the Effectiveness of Prompt-Based Interactions for Software Help-

Seeking. To be published in Human-Computer Interaction. Accepted for publication in the

Proceedings of the 29th International Conference on Intelligent User Interfaces (IUI'24), March

18-21, 2024, in Greenville, SC, USA. https://arxiv.org/abs/2402.08030 [Accessed on March 2024].

Lai, Y., Li, C., Wang, Y. et al. (2023) DS-1000: A Natural and Reliable Benchmark for Data

Science Code Generation. To be published in Proceedings of the 40th International Conference on

Machine Learning, PMLR, 202, 2023. pp.18319-18345 and Software Engineering. [Preprint]

https://arxiv.org/abs/2211.11501 [Accessed on March 2024].

https://developer.arm.com/%20documentation/ihi0024/latest/
https://developer.arm.com/%20documentation/ihi0024/latest/

84 Revista Română de Informatică și Automatică, vol. 34, nr. 2, 75-84, 2024

www.rria.ici.ro

Li, Y., Choi, D., Chung, J. et al. (2022) Competition-Level Code Generation with AlphaCode. To

be published in Programming Languages. [Preprint] https://arxiv.org/abs/2203.07814 [Accessed on

March 2024].

Mammo, B. W. (2017) Reining in the Functional Verification of Complex Processor Designs with

Automation, Prioritization, and Approximation. Ph.D. thesis, University of Michigan. [Accessed

on March 2024].

Morris, M. R. (2023) Scientists' Perspectives on the Potential for Generative AI in their Fields. To

be published in Computers and Society. https://arxiv.org/abs/2304.01420 [Accessed March 2024].

Morris, M. R., Carrie J. Cai, C. J., Holbrook, J., Kulkarni, C. & Terry, M. (2022) The Design Space

of Generative Models. To be published in Artificial Intelligence. https://arxiv.org/abs/2304.10547

[Accessed on March 2024].

Murr, L., Grainger, M. & Gao, D. (2023) Testing LLMs on Code Generation with Varying Levels

of Prompt Specificity. To be published in Software Engineering. https://arxiv.org/pdf/2311.07599

[Accessed on March 2024].

OpenAi, ChatGPT (2022) https://openai.com/blog/chatgpt [Accessed January 2024].

Revees, B., Sarsa, S., Prather, J. et al.(2023) Evaluating the Performance of Code Generation

Models for Solving Parsons Problems With Small Prompt Variations. ITiCSE 2023: Proceedings of

the 2023 Conference on Innovation and Technology in Computer Science Education V. 1, June

2023. pp. 299–305. doi:10.1145/3587102.3588805.

Tom, B.B., Mann, B., Ryder, N. et al. (2020) Language Models are Few-Shot Learners. To be

published in Computation and Language. [Preprint] https://arxiv.org/abs/2005.14165 [Accessed on

March 2024].

Weidinger, L., Mellor, J., Rauhet, M. et al. (2021) Ethical and social risks of harm from Language

Models. To be published in Computation and Language. https://arxiv.org/abs/2112.04359

[Accessed on February 2024].

Diana DRANGA is a Ph.D. student at the Faculty of Electronics, Telecommunication, and

Information Technology, National University of Science and Technology Politehnica Bucharest.

She holds a master’s degree in advanced software technologies in Communications and a bachelor

degree in engineering, obtained from the Polytechnic University of Bucharest, Faculty of

Electronics, Telecommunication, and Information Technology. She is a verification engineer with

almost nine years of experience in various projects and companies such as Infineon, Microchip,

NXP, Amazon and Intel. Her main subject of research consists of how AI can aid the process of

functional verification in different aspects of the project.

Diana DRANGA este student doctorand la Facultatea de Electronică, Telecomunicații și

Tehnologia Informației, Universitatea Națională de Stiință și Tehnologie Politehnica București.

Deține o diplomă de master în Tehnologii Software Avansate în Comunicații (TSAC) și o diplomă

de licență în inginerie obținută de la Universitatea Națională de Stiință și Tehnologie Politehnica

București, Facultatea de Electronică, Telecomunicații și Tehnologia Informației. Cu aproape nouă

ani de experiență în domeniul ingineriei de verificare, aceasta a lucrat în diferite proiecte și diverse

companii precum Infineon, Microchip, NXP, Amazon și Intel. Cercetarea sa se concentrează pe

modul în care Inteligența Artificială poate îmbunătăți procesul de verificare funcțională.

http://www.rria.ici.ro/

This is an open access article distributed under the terms and conditions of the
Creative Commons Attribution-NonCommercial 4.0 International License.

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

