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Abstract: Automated recognition and classification of aquatic species (fish, shrimp etc.) are very useful for 

studies dealing with the count of species for population evaluation, fish behaviour analysis, monitoring of the 

ecosystem and understanding the association between species and the ecosystem. Transformers have shown 

phenomenal success in computer vision problems. However, it demands extensive data for classification 

tasks. Existing traditional vision transformers necessitate large datasets for heightened accuracy, perpetuating 

the belief that transformers are data-hungry. This paper aims to dispel this idea by introducing the Amended 

Dual Attention oN Self-locale and External (ADANSE) mechanism-based vision transformer for classifying 

underwater (fish) species. In this approach, input images undergo block-tokenization, followed by the 

application of the proposed attention mechanism, Amended Dual Self Locale and External attention. The 

Amended dual self-locale attention layer extracts deep feature representations and the external attention 

mechanism considers the potential relationship among all image blocks. Then, the outputs from both 

attention mechanisms are further feeding the Multi-Layer Perceptron (MLP) network for species recognition. 

A proprietary fish database on complex environments is acquired and a self-collected fish database is 

constructed. This includes the species of Penaeus vannamei, Hypostomus plecostomus, Oreochromis 

niloticus and its juvenile. When compared to existing ViT networks, the proposed ADANSE network proved 

to perform better, attaining an accuracy of 90.9% on proprietary datasets and 92% on standard benchmark 

datasets, emphasising its robust performance even on small-sized images. This highlights the potential of the 

ADANSE ViT network to address data dependency concerns and achieve competitive accuracy levels in 

underwater species classification. 

Keywords: Vision transformer, Small-sized Datasets, Fish species, Image classification, Self-locale, 

Attention mechanism. 

1. Introduction  

Underwater image classification holds extensive potential, encompassing target recognition, 

debris detection, aquatic monitoring, and various other applications (Cao et al., 2016). Broadly, 

image classification involves extracting relevant features from an image and categorising its pixels 

into distinct classes (Jose et al., 2020). Video and image data of marine species are typically 

obtained from underwater survey equipment such as Remotely Operated Vehicles (ROV), Side 

Scan Sonar (SSS), and others. Automated recognition and classification of underwater species, 

including fish and shrimp, prove invaluable for studies involving species population assessment, 

fish behaviour analysis, ecosystem monitoring, and comprehending the interplay between species 

and the ecosystem (Liu et al., 2019). In recent decades, deep learning networks have exhibited 

promising results in computer vision applications like image classification, object localisation, 

detection, semantic segmentation, and more. The Convolutional Neural Network (CNN), a widely 

used machine learning approach for image classification, utilises a "Convolution layer" to detect 

patterns like edges and shapes by convolving with filters in this layer. While CNN performs well, it 

falls short in extracting the semantic features of an image, attributed to the limited receptor field 

size in the convolutional layer, which is equivalent to the filter size. In contrast, the vision 

transformer has gained rapid popularity and emerged as a focal point in modern machine-learning 

research. It partitions the input image into fixed-size blocks (16 × 16 patches) and establishes 

contextual relationships through an attention mechanism. Vision transformers can effectively 

extract long-range dependencies within the series of image blocks, eliciting high semantic features.  

Though the vision transformers have made significant progress in computer vision tasks, 

there still are many aspects that have to be improved. The main contributions of the paper are: 
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• To dissipate the myth that the transformers are "data-hungry". This paper proposes an 

Amended Dual Attention oN Self-locale and External (ADANSE) mechanism based 

vision transformer for automated classification of fish species; 

• A proprietary fish database (4 categories) on complex environments is acquired and a 

self-collected fish database is constructed; 

• The proposed network is compared with other existing vision transformer networks 

and the outcomes reveal that the proposed network achieves competitive trade-offs 

between accuracy and complexity on different image resolution datasets. i.e.) the 

proposed ADANSE ViT exhibits an accuracy of 90.9% on proprietary and 92% on 

standard benchmark datasets even on 32 × 32 sized images. 

The rest of the paper is organised as follows. In Section II, the existing techniques on vision 

transformer-based networks are discussed. In Section III, the datasets considered and the proposed 

methodology are discussed with special emphasis on the ADANSE mechanisms. Section IV 

presents the experimental quantitative analysis by comparing the performance of the proposed 

network with the other state-of-the-art networks. In Section V, the conclusion and future research 

directions are outlined. 

2. Related works 

Many researchers have worked on image classification tasks using Vision Transformer 

(ViT). Initially, Vaswani et al., (2017) proposed a transformer with an associated encoder and 

decoder implemented through an attention mechanism for machine translation tasks. Later, 

Dosovitskiy et al., (2020) have advocated vision-based transformer networks for visual recognition 

tasks. They split the entire image into fixed-size patches and append the position embeddings to 

them. Then it is provided as input into the encoder containing multi-head attention and Multi-Layer 

Perceptron (MLP) to obtain the classification token. Chen et al., (2021) have proposed a 

deformable patch-based transformer for image recognition and object detection tasks. They divide 

the image into different-sized patches in the view to maintain the semantic information of the 

image and achieve good accuracy in classification. Guo et al., (2022) have designed an external 

attention module-based bi-linear transformer for deep feature extraction. They have performed 

analysis on visual recognition, object localisation, semantic segmentation, point cloud synthesis 

etc., and have shown better performance compared to that of others. Liu et al., (2021) have 

presented a Swin transformer that computes the feature representation using Shifted windows. It 

achieves higher efficiency through the construction of hierarchical feature vectors by integrating 

the image patches in deeper layers.  

Generally, the ViT models demand huge data to perform image classification tasks. To 

address this, Lee et al., (2021) have put forward a vision transformer model for a small-sized 

dataset. They have proposed shifted patch tokenisation to overcome the locality inductive bias and 

have acquired the features from scratch on small-sized data. They spatially divide the whole image 

into several shifted directions and concatenate the same with the source image to traverse through 

the encoder and generate the classification token. Wu et al., (2021) have introduced convolution 

into ViT called Convolutional Vision Transformer (CvT). Through modification of convolutional 

token embedding and leverage of convolution, appropriate characteristics of CNNs have been 

projected onto ViT (i.e., shift, scale and distortion invariance) while conserving the advantages of 

Transformers (i.e., dynamic attention, global context, and better generalisation). Touvron et al., 

(2021) have augmented the CNNs with attention-based global maps to attain non-local reasoning. 

Here, they have replaced the pooling layer with an aggregation layer. This acts as a distinct 

transformer block that loads the behaviour of the patches in the classification decision. They have 

introduced the aggregation layer with basic patch-based CNN that is parameterised by two 

parameters namely width and depth. Hassani et al., (2021) have developed a Compact Convolution 

Transformer (CCT) by replacing patch tokenisation with the convolution process. Thus, their 

model eradicates the usage of class tokens and positional embeddings through a novel sequence 

pooling strategy and shows good precision even on small-sized datasets.  

http://www.rria.ici.ro/
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Wang et al., (2022) have provided a basic alternative attention mechanism through the 

incorporation of shift operation in ViT. Muthuraman & Santhanam, (2022) have proposed a hybrid 

restoration network-weighted filter for pixel regularisation thereby achieving complete edge detail, 

consistent brightness and good contrast on underwater images. Li & Chen, (2021) have designed 

UDA-Net (Underwater Densely Attention - Network) with a feature-extraction attention layer. 

During training, UDA-Net blends a variety of information and extracts the channel attention maps 

to obtain the weighted interest points. Lakshmi et al., (2021) have developed a modified 

underwater light attenuation prior (MULAP) model based on image contrast and sharpening filter 

to enhance the degraded underwater image. Huang et al., (2022) have introduced an Adaptive 

Group Attention (AGA) module network to select the complementary channels based on the 

attention parameters. It is used on the swin transformer as an end-to-end underwater image 

enhancement network. Peng et al., (2023) have designed an U-shaped transformer with a Channel-

wise Multi-Scale Feature Fusion Transformer (CMSFFT) for Underwater Image Enhancement 

(UIE) tasks. Li et al., (2022) have presented high-precision Underwater Object Detection (UOD) 

based on self-supervised deblurring and enhanced transformer modules. Due to the limitations of 

different perspective images, the network works on perspective transformation in the view to enrich 

the image features within the network. Qu et al., (2022) have proposed a Multi-Color 

Convolutional and Attentional Stacking Network (MCCA-Net) that fuses image features from the 

attention module and convolution layer. Since the variants of ViT are highly dependent on large-

sized data, they lack performance on small-sized data. To the best of our knowledge, the previously 

existing techniques lack inductive bias and are highly “data-hungry”. To address this issue, this 

paper proposes an ADANSE mechanism for vision transformers towards achieving automated 

classification of fish species, even on small-sized datasets. 

3. Proposed methodology 

3.1. Data Pre-processing 

The data is acquired through an equipment called “Sofar Trident UW drone”. It is composed 

of a built-in camera with 6 Light Emitting Diodes (LEDs), 25 m Tether and a Joystick Controller 

with an Android display. This display helps the moderator to navigate the drone in the required 

direction and capture the underwater scenes. The data is acquired from different caged aquaculture 

tanks with varying atmospheric lights. The location information of the collected data is described  

in Table 1.  

Table 1. Location Description of Proprietary dataset 

Date 
Survey Area Depth 

(m) 
Location Position Notation used 

December 9, 2020 
Paraprofessional Institute 

of Aquaculture 

Technology, Muttukadu 

12°48'49.50'' N 

80°14'34.91'' E 
L1 6-7 

August 2, 2021 

August 14, 2021 
Fishery Department 

Office, Chengalpattu 

12°43'31.08'' N 

79°57'4.18'' E 
L2 7 

The captured video is recorded in MP4 format with 720-pixel resolution at 30 frames per 

second. As a pre-processing step, the video is converted into frames of images and duplicate frames 

are filtered using hashing technique (Zendel & Zinner, 2021) to avoid overfitting of the network. 

Then, image labelling is done manually and the images are categorized into their respective species 

classes. Finally, the proprietary fish database is compiled to dissipate the myth that the transformers 

are "data-hungry". A sample of the proprietary dataset considered for building the network is 

shown in Figure 1. Due to the properties of water and its impurities, the acquired data exhibits 

haze, colour deviations, non-uniform illumination, blurred details and low-contrast. Thus, the 

acquired data has undergone the image enhancement process (Muthuraman & Santhanam, 2022) to 

obtain the visibility improved images. 
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Image index I1 I2 I3 I4 

Common 

name 

White-leg 

Shrimp 
GIFT Nile Tilapia Common Pleco Fry Nile Tilapia 

Scientific 

name 

Penaeus 

vannamei 

Oreochromis 

nilotics 

Hypostomus 

plecostomus 

Oreochromis 

nilotics (juvenile 

) 

Sample Data 

    

Degraded raw images of species 

    

Visibility improved images 

No. of Images 178 177 170 176 

Figure 1. Proprietary Dataset Considered 

3.2. Proposed ADANSE Vision transformer  

A standard transformer (Fu, 2022) comprises of Multi-Head Attention (MHA) layer 

followed by Layer Norm (LN) and Multi-Layer Perceptron (MLP) block with residual connections. 

Initially, the input feature is processed as Query Q , Key K and Value V with the help of MLP. 

Later, the encoder is processed according to Eqn. (1) and Eqn. (2). 

( ) ( )1, ,     ,  ..   O

nMHA Q K V concatenate h h W=                                                                     (1) 

( ),  , Q K V

i i i ih Attention QW KW VW=                                                                                     (2)  

Motivated by the scaling of the transformer in Natural Language Processing (NLP), the 

ADANSE Vision transformer (ViT) is proposed. To process 2D images, the proposed ADANSE 

ViT considers the input as a 1D sequence of token embeddings. The input image     H W CI R    is 

reshaped into a series of flattened 2D blocks 
( )2  .

 
aN P C

peI R


 . Here ( , )H W is the height and width, 

i.e., the resolution of the source image. Further, C refers to the number of channels (RGB image, 

3C = ), ( ), ,a aP P is the resolution of each block and 
2/ aN HW P=  is the number of resultant 

blocks. The higher the number of image blocks, the higher the image resolution and thus, the 

higher the memory consumption. It uses static latent vector size L throughout the layers. The 

flattened blocks are mapped to n dimensions with a linear projection as expressed in Eqn. (3) 

through Eqn. (7). 
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kd → 1 2

0   ;  ;    ; .;    ,   
a a a

N

class P P P posY I I E I E I E E =  +   

( )2 1  ( . ) 
,    a

N LP C L

posE R E R
+ 

                                                                         (3) 

( )( )'

1 1    ,  1 .m m mY ALSA LN Y Y m n− −= + =                                                                     (4) 

( )( )' '   ,  1 .m m mY MLP LN Y Y m n= + =                                                                      (5) 

( )( )'

1 1    ,              1 .m m mY EA LN Y Y m n+ += + =                                                                     (6) 

0( )nZ LN Y=                                                                                                                           (7) 

The resultant of the projections is the patch embedding that retains the positional 

information. Each vector is independent and the sequence of embedded vectors is given as an input 

to the encoder. The existing self-attention layer lacks locality inductive bias, i.e., image pixel 

values are locally correlated, and their correlation maps are translation-invariant. This makes the 

standard ViT demand more data for efficient classification. In order to dissipate the myth that the 

transformers are "data-hungry", the proposed ADANSE ViT encoder consists of three modules: 

Amended Locale Self Attention (ALSA), External Attention (EA) and LN followed by 

classification head MLP block to the respective attention modules. ALSA and EA mechanisms can 

extract more essential semantic features of the images than existing CNNs and Vision transformer 

networks. The module makes use of Query Q , Key K and Value V . Initially, the cosine similarity 

between Q  and K is calculated using the dot product, and their resultant is divided by the square 

root of the key dimension. The cosine similarity between two vectors is calculated as in Eqn. (8). 

( )
 .  

  ,  
* 

i i

x y
Cosine x y

x y
=                                                                                                            (8) 

In Eqn. (8), .x y  is the dot product and *x y  is the cross-product of two feature vectors. 

Further, x and y denote the length of the two vectors. The proportion between the dot product and 

key dimension helps avoid small gradients in the probability function. In order to produce the 

attention weights, the softmax probability function is applied to the dot product as in Eqn. (9). 

( )    , ,    
T

k

QK
Locality Self Attention Q K V softmax V

d

 
=  

 
 

                                         (9) 

Here, ,Q K  and V  are taken from the same input. Hence, the dot product may result in huge 

self-token gatherings rather than inter-token relations. To avoid this, the dot product of diagonal 

edge features is masked. This masking intensifies the attention rank between different tokens and 

constructs a sharper attention rank. Each edge masking focuses on the −  on diagonal 

components of E . Thus, it compels the attention module to pay more attention to local features in 

an inter-relation manner. The proposed edge diagonal masking is defined in Eqn. (10). 

( )
( ) ( )

( )
,

,

       
 

                   

l mM

l m

E x y l m
E x

l m

+ 
=

− =
                                                                                (10) 

In Eqn. (10), ( ),

M

l mE x  denotes the masked similarity matrix of each component. The scaling 

ratio factor is a constant in the existing attention module, whereas, in the proposed module, it is a 

learnable temperature parameter that can modify the softmax probability function. Based on Eqn. 

(8), the ALSA with edge diagonal masking and learnable temperature modification is applied 

according to Eqn. (11). 
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( ) ( )( )      /M

vALSA x softmax E x xE=                                                                               (11)  

In Eqn. (11), vE is the linear projection value, and  is the learnable temperature. The 

amended dual self-locale attention layer extracts and appraises the deep feature representation of 

diagonal features at every position. This is done by calculating the weighted sum of features using 

pair-wise affinities across all positions within a single image. Then, the resultant from ALSA is fed 

into the Layer Norm for normalisation and then passed onto the External attention mechanism 

module. The external attention mechanism helps in considering the potential correlation between 

all blocks of images. EA makes use of dual cascaded linear layers and a normalisation layer 

without the multi-head mechanism. It computes the attention between the local diagonal features 

and the memory units. ( )
,x y

 is the similarity between the x-th pixel and y-th row of learnable 

parameter   of the input. This behaves as a memory for the entire training data. P is the attention 

map extracted from the prior knowledge of the trained dataset and it is normalised in the same 

manner as that done in the ALSA mechanism. Later, the update is done to the input local features 

from   in P as in Eqn. (12) and Eqn. (13). 

( ) ( ),
  .  T

x y
P Norm F = =                                                                                       (12)  

. outFeat P =                                                                                                              (13) 

It makes use of dual memory units  
xM  and 

yM  as K  and V  to enhance the network’s 

ability. This amends the EA mechanism as shown in Eqn. (14) and Eqn. (15). 

( ) ( ),
  .  T

xx y
P Norm F = =                                                                                               (14) 

. out y
Feat P =                                                                                                                   (15) 

A Layer Norm is applied before and after each of the attention mechanisms (ALSA, EA). 

Then, the output of both the attention mechanisms after applying Layer Norm are headed to the tri-

layer Multi-Layer Perceptron (MLP) network, which is composed of two fully connected layers 

with a GELU (Gaussian Error Linear Unit) non-linearity function. Since, batch normalisation is 

dependent on batch size, it cannot be applied for small-sized datasets. This can be overcome by the 

usage of Layer Norm as it is independent of the batch size. Through incorporation of Layer Norm, 

all neurons in the specific level will have an identical distribution across all the features for a given 

source. For instance, if the input has Q features, then it is a Q-dimensional vector. If there are 

F elements in a batch set, the normalisation is carried along the length of the Q-dimensional vector 

and not across the batch size F. It normalises the output vector obtained from layer 1k − . The 

Layer Norm is applied as presented in Eqn. (16) and Eqn. (17). 

2

 i l
i

l

x
x





−
=                                                                                                                           (16) 

          ( )   .  i i iy LN x x = = +                                                                                                        (17) 

In Eqn. (16), l  and 
2

l are the mean and variance of the source input. With the help of 

these parameters, the neuron on each layer is normalised in an independent manner. Thus, LN  

helps in normalising each of the inputs in the set independently across all the edge diagonal 

features and other global features. The methodology involved in the proposed ADANSE network is 

shown in Figure 2. GELU is an activation function that weights the source by their percentile rather 

than gates inputs by their sign as in ReLUs (Rectified Linear Unit) 01xx  . The GeLU function is 

expressed as in Eqn. (18). 

http://www.rria.ici.ro/
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( ) ( ) ( ) ( )1
  .     . 1 erf / 2

2
GELU x x P X x x x x x  =  = = +

 
                                            (18) 

GeLU is different from ReLU in that it does not have any limit range like upper bound or 

lower bound. For example, the ReLU function outputs zero in the negative input limit whereas the 

GeLU is much smoother in this region. It is differentiable in all limits and permits to have gradients 

even in the negative limit. Further, the ReLU function activates some of the neurons to be zero if 

their condition is not satisfied. This makes the GeLU more beneficial than the ReLU. A MLP layer 

and a residual connection after each of the attention module layers are used for the species 

recognition task. It is also found that the existing self-attention layer on the vision transformer lacks 

the locality inductive bias and this is overcome by the proposed ADANSE ViT network. 

 

Figure 2. Methodology involved in proposed ADANSE ViT Network 

4. Experiments 

4.1. Training regime 

The model configuration of ADANSE ViT is as follows: In the case of experimentation with 

ADANSE ViT, the number of heads is set to 4 and the size of the blocks of the embedding layer is 

fixed to 6. In addition, the regularisation technique called stochastic depth (Fu, 2022)  is applied 

such that it randomly drops a set of layers. It is similar to Dropout but it takes control over chunks 

of layers rather than the distinct nodes that exist inside the layer. It is used before the residual 

blocks of the transformer network. Furthermore, AdamW (Steiner et al., 2021) is used as the 

optimiser to update the weights during the training. It is different from the Adam optimiser (Li et 

al., 2023). AdamW produces better training loss and therefore the network generalises much better 

than the models trained with the Adam. Here, the regularisation parameter called weight decay 

(Dong et al., 2022) is set to 0.0001 as a small penalty to the loss function. Further, the batch size is 

set to 32, and the learning rate is set to 0.001. This configuration has been determined 
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experimentally. To improve the classification accuracy and maintain the stability of the model, the 

epochs and the learning rate are adjusted during the training process. The model was executed on a 

server with SUPERMICRO make/model, equipped with an Intel Xeon processor and ample RAM 

(128 GB DDR4) in remote access. The storage configuration includes a combination of HDDs and 

SSDs for different storage needs. In terms of GPUs, the system features four NVIDIA GeForce 

RTX 2080 cards, each with 11 GB of GDDR6 VRAM, providing significant computational power 

for GPU-accelerated tasks. The deep learning model was trained using the above hardware 

configuration for a total duration of 50 epochs. Each epoch took approximately 1.29 s to complete, 

resulting in a total training time of 64.5 s with an inference time of 0.16 s. The model architecture 

comprised of 8 transformer layers with image patch size of 6×6 and 6 M parameters. The deep 

learning model was executed within a Conda environment on an Ubuntu terminal, utilising the 

Keras framework. The proposed ADANSE network is a lightweight model as it incurs low 

complexity and has been trained on a CPU (AMD 5900X) and still yields high performance. 

Moreover, the ADANSE network characterises a fewer number of parameters comparatively with 

the existing vision transformers. Even if the researchers do not have access to high-end hardware 

systems, one can democratise the vision transformer and make it more available to anyone who 

needs to exploit it. 

4.2. Ablation study 

In order to validate the proposed modules in the entire network model, experiments are 

conducted on both standard benchmark datasets and proprietary datasets. The benchmark Dataset 

considered in this work is the WildFish (Zhuang et al., 2018)  Dataset. It consists of 1000 fish 

categories with 54,459 unconstrainted images. The ablation experiments of ADANSE ViT are 

carried out on both datasets. Since the resolution of images will have an impact on classification 

accuracy, it is also experimented on different resolution images (32 × 32, 64 × 64, 96 × 96 and 128 

× 128) to validate the proposed network on downsampled and upsampled images. It is observed 

that the incorporation of the proposed attention module facilitates the learned attention maps to 

focus on both foreground and background species in an efficient manner. The Layer Norm 

technique produces a significant improvement in EA attention and also makes better improvements 

on ALSA. Table 2 illustrates the pseudocode on the proposed ADANSE ViT model. 

Table 2. Pseudocode on proposed ADANSE ViT network 

Pseudocode: Proposed ADANSE ViT network 

Input: Visibility improved source species Image, ( ),I x y of size m n  

Output: Classified output index, speciesClassified  

begin  

{  

stage: Block-Embedding 

sub-stage: Reshape the source image into series of flattened 2D blocks 

( ) ( )
2  .

                               ;
aN P C H W C

peI R Reshape I R
      

 // ( ),  H W → Height and Width of the source image; C → Number of channels 

                     (RGB image, 3C = ) 

 // , ,( )a aP P →  Resolution of each block 

end sub-stage 

sub-stage: Mapping of flattened blocks to a linear projection 

2  / aN HW P  

http://www.rria.ici.ro/
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//  N →The Resultant number of blocks 

( )2 1  . ) 1 2

0   ;  ;    ; .;    ,     ,   a

a a a

N LP C LN

class P P P pos posY I I E I E I E E E R E R
+   +    

// L →Static latent vector size 

end sub-stage 

end-stage 

stage: Compute the Amended Locale Self Attention (ALSA) map 

( )    , ,        
T

k

QK
Locality Self Attention Q K V softmax V

d

 
  

 
 

 

// Q→   Query; K →  Key;   V →   Value; kd → Square root of the key dimension   

 sub-stage: Calculate the edge diagonal mask 

( ) ( ) ( ), ,    ;      M

l m l mE x E x y l m +   

// ( ),

M

l mE x → Edge diagonal mask with similarity matrix of each component 

 end sub-stage 

 sub-stage: Estimate ALSA with edge diagonal masking & learnable temperature 

modification 

( ) ( )( )         /M

vALSA x softmax E x xE  

// vE →  learnable linear projection  

// → learnable temperature parameter 

 end sub-stage 

end-stage 

stage: Perform Layer Normalization  

1

1
     

Q

l i

i

x
Q


=

    

( )
22

1

1
    

Q

l i l

i

x
Q

 
=

 −   

2

 i l
i

l

x
x





−
  

( )    .  i iLN x x  +  

// l  and 
2

l →  mean and variance of the features 

end-stage 

stage: Apply GeLU activation function in MLP  

( ) ( )1
      . 1 erf / 2

2
GELU x x x  +

 
 

end-stage 

stage: Determine the External Attention Map  

( )    .  T

xP Norm F   

( )
,

 
x y

P →  
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   . out yFeat P   

// P→ Attention map extracted;  x  and y →  Memory units; outFeat → Output 

features 

end-stage 

/** Similar to ALSA stage, Layer normalization and GeLU activation function is again 

carried out after the EA layer and again computation of ALSA module is performed **/ 

stage: Apply GeLU activation function of ALSA II module 

( ) ( )2

1
    . 1 erf / 2

2
GELU x x x  +

 
 

Classified output index, ( )2  speciesClassified GELU x  

end-stage 

} 

end   

4.3. Results and discussions 

In order to classify the species images, the evaluation is carried out with the proposed 

ADANSE ViT network and other existing ViTs as shown in Table 3.  

Table 3. Performance comparison in terms of accuracy (%) of different ViT models on both 

Proprietary and Wildfish Datasets 

Image size 32 × 32 64 × 64 96 × 96 128 × 128 

Existing ViT 

Propri-

etary 

(%) 

Wild 

Fish 

(%) 

Propri-

etary 

(%) 

Wild 

Fish 

(%) 

Propri-

etary  

(%) 

Wild 

Fish 

(%) 

Propri-

etary  

(%) 

Wild 

Fish  

(%) 

CCT  

(Hassani et al., 2021) 
69.1 54.2 70.56 57.1 71.56 57.1 71.7 60.4 

EA  

(Guo et al., 2022) 
73.4 67.5 76.82 68.7 76.99 68.7 74.1 70.1 

ViT  

(Dosovitskiy et al., 

2020) 

80.2 72.4 82.73 76.8 83.21 76.8 85.1 76.7 

Swin transformer  

(Liu & Chen, 2021) 
82.9 81.4 83.42 82.1 86.19 82.1 86.6 84.8 

ViT for Small Dataset 

(Lee et al., 2021) 
84.6 83.7 86.29 83.9 86.84 83.9 87.0 82.4 

ViT without attention 

(Wang et al., 2022) 
24.1 40.4 29.18 46.1 31.47 58.7 36.8 59.6 

Proposed ADANSE 

ViT 
90.9 92.8 91.86 93.1 91.99 93.8 92.3 93.9 

It includes CCT (Compact Convolution Transformer) (Hassani et al., 2021), EAT (External 

Attention Transformer) (Guo et al., 2022), Vision Transformer (ViT) (Dosovitskiy et al., 2020), 

Swin transformer (Liu & Chen, 2021), ViT for small dataset (Lee et al., 2021) and ViT without 

attention (Wang et al., 2022) on both proprietary data and benchmark data WildFish (Zhuang et al., 

2018) characterising different image resolutions .  

The notable observations include: ViT without attention (Wang et al., 2022) consistently 

performing poorly compared to other models. The proposed ADANSE ViT consistently 

demonstrates the highest accuracy percentages across all image sizes and datasets, showcasing its 

http://www.rria.ici.ro/
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effectiveness in underwater species classification. On the impact of image size, as image size 

increases, there is an improvement in accuracy for most models (Si et al., 2023), indicating the 

significance of larger input dimensions (Zeng et al., 2023). It is also observed that the proposed 

ADANSE ViT has shown an accuracy of more than 90%, this score is the highest when compared 

with that of the other existing vision transformer network models for both datasets. It is also 

revealed that the proposed network achieves competitive trade-offs between accuracy and 

complexity. It is claimed that the contribution of each ALSA and EA produces a synergy. So, the 

performance of ADANSE ViT progresses and the computational cost also decreases. For example, 

the proposed attention modules on proprietary data and WildFish data have improved the 

performance by +6.3% and +9.1%, respectively, compared to the respective module(s) used by ViT 

for small Dataset (Lee et al., 2021) on 32 × 32 resolution images. 

On overall comparative analysis, the proposed ADAN-SE ViT surpasses existing ViT 

models, achieving accuracy percentages ranging from 90.9% to 93.9% across all image sizes and 

datasets. ViT without attention (Wang et al., 2022) consistently lags behind other models, 

highlighting the importance of attention mechanisms in ViT models. From Table 3, it is also 

revealed that the ViT shift module has shown inferior throughput when compared to that of others. 

On average, the proposed ADANSE ViT has outperformed the other ViTs with the superior 

improvement of +27.33% and +36.94% for both datasets on 32 × 32 resolution images. In Table 3, 

it is observed that an increase in image resolution improves classification accuracy. For 32 × 32 

images, the proposed ADANSE network achieves an accuracy of 90.9% for proprietary data and 

92.8% for the standard benchmark WildFish dataset. Similarly for 64 × 64, 96 × 96 and 128 × 128 

resolution images, it attains an accuracy of more than 91% for both datasets. In the case of the 

proprietary dataset (~701 images), the ADANSE ViT is trained and evaluated on the divided (train: 

validation: test) ratio of 60: 10: 30. Thus, the training set and a validation set comprises of 490 

(70%) images and the testing set is composed of 211 (30%) images. Finally, the ADANSE ViT has 

shown the best results for species identification in a generalised manner. In summary, the proposed 

ADANSE ViT demonstrates superior performance, showcasing its potential for precise underwater 

species classification across varying image sizes and datasets. 

5. Conclusion 

The paper introduces the ADANSE ViT network for the classification of fish species. The 

network comprises an amended dual self-locale and external attention layer referred to as ALSA 

and EA, designed to extract deep feature representations. The ALSA module captures edge 

diagonal features across all locations, adjusting learning parameters for enhanced extraction. The 

EA mechanism treats memory units as dictionaries, fostering the learning of distinct features and 

uncovering correlations between image blocks. Subsequently, both attention mechanisms feed the 

Multi-Layer Perceptron (MLP) network for species recognition. Moreover, the ADANSE network 

has a comparatively smaller number of parameters. Even if the researchers do not have access to 

high-end hardware systems, one can democratise the vision transformer and make it more available 

to anyone who needs to exploit it. Experiments on different marine species datasets (own 

proprietary dataset and Wild Fish datasets) acquired from scratch at varying atmospheric light 

demonstrate the robust and effective performance of the proposed network. The experiments and 

comparisons prove that the proposed method outperforms the state-of-the-art methods with an 

overall accuracy improvement of +27.33% and +36.94% for both datasets on 32 × 32 images. On 

average, the proposed ADANSE network achieves an accuracy of 92% for both datasets on 

different resolution images. Future work may extend the application to the localisation of aquatic 

species using underwater video and other modalities. 
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