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Abstract: The password is the most prevalent method of authentication and is essential for keeping data safe. 

Due to instances of the release of massive volumes of data records caused by database breaches, a sizable 

number of passwords have already been broken offline using the disclosed data in recent years. The rainbow 

table attack, the most practical offline password attack method, is systematically discussed in this study. The 

two improved rainbow table attack schemes ‒ a novel time-memory tradeoff method using rainbow table sort 

proposed by Thing and Ying (TY attack) and an upgraded approach combining TY attack with differentiated 

points proposed by Li (Li attack) ‒ are the main approaches of this article. Additionally, this article addresses 

the limitations of the current countermeasures for defending against offline password attacks from the 

perspectives of file encryption, password vaults, and hardware. 
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1. Introduction  

Personal and company information is increasingly being kept by Internet service suppliers or 

third-party information services due to the proliferation of cloud computing and big data. However, 

not all data service providers can be trusted with the user’s information. Hackers can gain access to 

the servers storing password credential files by exploiting system flaws, gaps in security, or human 

error. In the digital age, offline password attacks that target stolen or hacked hashed or encrypted 

password databases pose serious cybersecurity risks. Offline attacks involve the unauthorized 

acquisition of password hashes or encrypted passwords, which intruders then attempt to decode 

using a variety of methods, in contrast to online attacks that target active login systems (Aslam et 

al., 2023; Khan et al., 2023). In order to protect sensitive user data and improve cybersecurity 

protective measures, it is essential to comprehend the nature of offline password attacks and the 

mitigation techniques used to counteract them.  

When launching an offline password attack, the adversary has full access to the file storing 

the encrypted form of passwords on the targeted system and can use any means to decrypt the 

passwords. The cracking procedure is undetectable by the target system (Yu & Huang, 2015). 

Sensitive user data has been regularly disclosed or published over the past few years due to the 

information service provider's weak security procedures. As a result of exposed password 

credential files or, in some cases, the plain text of passwords, offline password attacks can crack 

the passwords of a large number of users. The Verge reports that since 2012, up to 20,000 

Facebook workers have had access to users' passwords stored in plain text on Facebook's servers. 

An estimated 1 billion Yahoo accounts were affected due to a data hack in 2013, as reported by 

The Guardian (Thielman, 2016). Users are now at great risk due to the exposure of files containing 

cipher text and even plaintext of their passwords. Due to the widespread practice of reusing 

passwords across multiple online services, hackers can potentially compromise a large number of 

credentials without the knowledge of users or the notice of companies by gaining access to relevant 

mailto:imran.khan@sussex.ac.uk
mailto:ken.si@sussex.ac.uk
mailto:imran.khan@sussex.ac.uk


82 Revista Română de Informatică și Automatică, vol. 34, nr. 1, 81-96, 2024 

www.rria.ici.ro   

files and carrying out offline password attacks. Research on methods for thwarting offline password 

attacks, such as protections to keep sensitive information from falling into the wrong hands and 

methods for authenticating users in the event of a breach, is now crucial (Kastrenakes, 2019). 

Cybersecurity faces a significant challenge from offline password attacks that target 

encrypted or stolen password hashes. Dictionary attacks, rainbow table attacks and other methods 

are used by attackers to extract plaintext passwords from hashed data. Strong hashing algorithms, 

novel salts, and the enforcement of strict password regulations are all necessary for mitigating this 

threat (Thing & Ying, 2009). Organizations and individuals can more effectively protect sensitive 

data and uphold the integrity of their password security systems by understanding the techniques 

used by attackers and taking preventative action. Organizations and individuals can use a variety of 

security measures to prevent offline password attacks. The development of hashes can be slowed 

down using hashing algorithms like bcrypt or scrypt, which makes it more difficult and time-

consuming for attackers to decipher passwords (Li et al., 2012). Additionally, by guaranteeing that 

even similar passwords generate different hashes, the use of distinct salts for each password can 

further strengthen security. A solid defense against offline attacks still relies on users being 

informed about strong password practices and having their passwords updated regularly. 

This work is organized in such a way that a comprehensive literature overview of offline 

password attacks and their defences is presented in Section 2. Section 3 presents how a rainbow 

attack works and what it entails. Rainbow table strategies, with an emphasis on the TY attack and 

the Li attack, are covered in Section 4. Section 5 covered current file encryption, password vault, 

and hardware safeguards against offline password attacks. Finally, in Section 6, problems and 

restrictions inherent in current offline password attack methods, conclusion, limitations, and future 

work are presented. 

2. Literature review  

2.1. The development of password 

A password is a secret piece of information, often a short string of characters, that users 

know and use for authentication, as described by Stallings (2011). Shift ciphers and substitution 

ciphers are examples of classical procedures for passwords (Stinson, 2005). Examples of such 

methods are the Caesar password and the Vigenere password. People started using rotor machines 

for encryption and decryption to increase the security and complexity of password systems. The 

well-known German cipher system Enigma, used throughout the Second World War, serves as an 

excellent example. The Communication Theory of Security Systems was published by Shannon 

(1949). He founded cryptographic theory and incorporated information theory into cryptography. 

Public key encryption was first presented by Diffie & Hellman (1976), ushering in a new era for 

cryptography (Diffie & Hellman, 1976). Numerous public key encryption algorithms have since 

been created. The RSA (Rivest et al., 1978 b) algorithm was developed by Rivest et al. (1978 a). It 

solved the open channel key distribution problem and enabled digital signatures. Public key 

algorithms also use El Gamal Encryption and ECC (Elliptic Curve Cryptography), in addition to 

the RSA technique. In 1993, the National Institute of Standards and Technology (NIST) released 

the Secure Hash Algorithm (SHA), which used the hash function and prevented the recovery of 

cyphertext or passwords. SHAs from more recent generations have been published. Hash 

encryption also uses the MD (Message Digest) algorithm and the SHA algorithm.  

2.2. Offline password attacks 

The authors (Yu & Huang, 2015) refer to an offline password attack as the process of 

obtaining the plaintext from the encrypted data utilizing only the password file and encryption 

method. Offline password attacks can be divided into three groups: dictionary, brute-force, and 

rainbow tables. A brute-force attack is one in which the attacker repeatedly tries every possible 

input combination. To identify brute-force attacks, Sperotto et al. (2009) suggested a Hidden 

Markov Model-based flow time series model. When conducting a dictionary attack, as opposed to a 
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brute-force attack, the attacker restricts the input space to words from a dictionary. To make 

dictionary attacks more effective, Weir et al. (2009) used a publicly available training set to 

construct highly probable password patterns. 

For Hellman’s (1980) time-memory trade-off strategy, Oechslin (2003) initially proposed the 

rainbow table. The temporal complexity of a rainbow table attack is lower than that of a brute-force 

attack and lower than that of a dictionary attack. A rainbow table is a precomputed lookup table 

used in the rainbow table attack to convert a cryptographic hash of a password back to the original 

plaintext password. Attackers can utilize the reduction function and the hash function to calculate 

the hash chain of a given hash value to retrieve the related plaintext. The adversary can recover the 

plaintext by regenerating the hash chain of any value on this chain that appears in a rainbow table. 

In addition, based on the rainbow table attack, Thing & Ying (2009) offers a new memory-time 

trade-off password attack. This method selects an initial value from among a smaller, more 

manageable group of plaintexts. Pre-computing and memory optimization help lower the required 

amount of storage space. To boost the efficacy of cryptanalysis, Avoine et al. (2008) presented a 

checkpoint-based improvement to the rainbow table attack. Avoine & Carpent (2017) increased the 

effectiveness of rainbow table attacks by determining the appropriate width of each rainbow table 

and visiting them in accordance with a new decision function rather than in sequential order. 

2.3. Defense mechanism against offline password attacks 

Various strategies have been employed to counter offline password attacks. Some of the 

well-known mechanisms are as follows. 

2.3.1. Defense mechanism from file-encryption perspective  

Users' passwords can be fundamentally protected by new encryption algorithms that can 

encrypt files stored on the server and guarantee the availability of the data at the same time, 

preventing offline attackers from discovering the password's cyphertext. Privacy Homomorphism 

(Rivest et al., 1978 a) initially introduced encryption, which permits users to manipulate encrypted 

data without first decrypting it. The computations performed by the homomorphic method on the 

cyphertext after decoding are the same as those performed on the plaintext. Homomorphic Privacy, 

the sophisticated algorithm of the system requires an excessive amount of resources for encryption. 

Function Encryption permits servers to acquire only the outcome of a particular function on 

ciphertext and no other information to reduce the algorithm's cost. IBE (Identity-Based Encryption) 

was first proposed by Boneh & Franklin (2001). Then, to reconcile the tensity between accessibility 

and privacy, Sahai & Waters (2005) proposed a fuzzy identity-based encryption system. The 

shipper establishes a set of qualities, a threshold, and data encryption as part of their system. Only 

recipients with the required minimum number of specified attributes can decrypt the ciphertext. 

The Key-Policy Attribute-Based Encryption (KP-ABE) Goyal et al. (2006) proposed embeds the 

access structure in the private key and integrates fine-grained access control with ABE. It is based 

on fuzzy IBE. Searchable encryption is one sort of functional encryption that guarantees data 

accessibility through searchable cyphertext. Identity-driven Public Key Encryption with Keyword 

Search was introduced by Boneh et al. (2004). In contrast to contributors with public keys, who can 

only send encrypted data into the system, users with private keys can search for, access, and 

decrypt encrypted data in this system. The primary private key is comparable to the users' private 

key in encryption with keyword search, and the scheme's keyword is comparable to the identity in 

Identity-Based Encryption (IBE). The token used to search is comparable to the identity's private key. 

2.3.2. Defense mechanism from a password manager perspective  

The use of a password manager, which is also referred to as a password vault, is an 

extremely efficient method for protecting users' passwords. It is a type of software application that 

transforms a user's master password into a series of unique passwords that may be used for a 

variety of services. A new hash technique proposed by Blocki & Sridhar (2016) uses client-side 

key stretching to raise the computational cost of the key derivation function for incorrect master 
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password guesses. It aided in lowering legitimate user costs while raising attack costs. A new 

cracking-resistant approach for password vaults based on Natural Language Encoder was 

developed by Chatterjee et al. (2015), which uses a decoy password generator in the event of a 

failed master password decryption. This redirects attackers to the website instead. 

2.3.3. Defense mechanism from hardware perspective  

A new password system, proposed by Almeshekah et al. (2015) incorporates a security 

module that is embedded in the target system to prevent unauthorized access to files storing 

passwords. In the event that an attacker does not know the hardware-dependent function, this 

system's deception mechanism can generate bogus passwords and alert administrators to the attack. 

3. Rainbow table attack 

Offline password attacks can be either dictionary, rainbow table, or brute-force-based. For a 

brute-force attack to work, the key space must be traversed, which is a very time-consuming 

process. In contrast, the space complexity of a dictionary attack is extremely high because it 

requires the generation and storage of pairings of plaintexts and cipher texts before breaking. As 

users' passwords grow longer, both dictionary attacks and brute force attacks become impractical 

due to their respective space and time complexity. In response, researchers have turned their 

attention to the rainbow table attack, which combines the benefits of both. 

3.1. Time-memory trade-off scheme 

Time-memory trade-off schemes have been around since 1980, when (Hellman, 1980) first 

presented. That method starts by picking a key, k1, at random, and then using the hash function H 

to determine its value. The new key k2 is determined by applying a reduction function R to the 

cipher text.  

2 1( )k f k=             (1) 

Where  

 

Figure 1. Hash Chain Table 

The steps in Figure 1 to generate a hash chain through m iterations should be followed. The 

only information saved is the initial and final links in the chain (k1 to km) and (c1 to cm), 

respectively). It is possible to generate a table of hash chains by changing the value of k1. The 

given Hash value x should be decripted using r to obtain y1. Then, h should be plugged in to y1 to 

obtain x1. The table should be checked to see if x1 appears there. If so, the chain can be 

reconstructed and the original text located. If not, the steps again should be tried again. Multiple 

tables can be constructed and saved to increase the password-cracking success rate. Each table here 

makes use of a unique r-value reduction function. Instances of cracking can have varying degrees 

of success depending on the reduction function used. The success rate can be raised by trying out 

various reduction functions. In general, it is possible to lower the space complexity of the attack 

method by storing the estimated beginning and ending locations on the chain. However, additional 

operations involving comparison of the cipher text raise the temporal complexity. It is more practical 

than a dictionary attack or a brute-force attack because of the trade-off between time and memory. 
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3.2. Rainbow table 

Hellman's time-memory trade-off framework places a premium on the ability to cross and 

merge chains. If the same value appears in two separate chains, the chains containing those values 

must be combined. Oechslin (2003) initially introduced the rainbow table technique, which 

employs a different reduction function in each chain and thereby improves the time-memory trade-

off scheme. Figure 2 depicts the rainbow table's internal structure. 

 

Figure 2. Rainbow Table 

The rainbow table attack is conducted in three phases. First, a rainbow table is computed 

using m separate reduction functions (r1 to rm), and the initial and final values are saved.  Then, an 

examination of each table from the beginning to the en dis required, followed by the merging of the 

crossing chains, their arrangement, and finally, their sorting. Finally, binary search is used to 

determine if there is a match in the terminal points, based on a given hash value of x. If so, the 

plaintext can be retrieved by recreating the Hash chain from the beginning. If not, rm shaould be 

substituted for x to obtain y1, and then h should be substituted for y1 to obtain x1. The existenc of a 

matching entry x1 should be determined. In every other case, x should be replaced with rm-1 and 

proceed as before. 

 

4. T-Y attack 

In order to reduce rainbow table memory loss, Thing & Ying (2009) refined the construction 

of rainbow tables. The novel T-Y attack architecture deviates from the rainbow table in that, unlike 

the tables' pre-computation stage, it does not save all the plaintext. 

 

Figure 3. Table structure of T-Y Attack 
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To calculate the first block of a table, one can look at Figure 3 and assume that there are k+1 

chains in the first block and that the first hash values of each chain are H, H+1, H+2,..., H+k. 

Consequently, the tracking of x1 and the numbers from c1 to cm is maintained. Each node in a T-Y 

attack is allocated a specific number of bits. Each block requires  bits of storage space 

since it keeps track of x as the starting point and k+1 as the final destination. For the same number 

of m chains as in the rainbow table, the number of blocks required for the T-Y Attack is 2m/(k+2). 

Thus, 2m/(k+2)*(n+k*n-k) bits of RAM are required for a T-Y Attack. Ting & Ying (2009) found 

that the minimum amount of total memory occurs at k=2m-2. The entire table consists of a single 

block. Ying & Thing (2011) used a technique for sorting passwords that involved inserting special 

characters into the endpoints of indexing the passwords so that their location could be determined 

even after sorting. T-Y attack can find the password by using the attack's endpoint, starting point, 

and special characters throughout the searching phase.  

5. Li Attack 

T-Y Attack was first implemented and evaluated in 2012 by Li et al. (2012). They 

discovered a linear relationship between the hash values H, H+1,...,H+k prior to the sorting 

process. The sorting procedure failed, and T-Y Attack was first implemented and evaluated in 2012 

by Li et al. (2012). Pre-sorting hash values H, H+1,...,H+k were found to follow a linear 

progression. This order was lost in the sorting phase, and the unique character in T-Y Attack 

greatly increases the temporal complexity of the indexing procedure, making its practical 

implementation impossible. The TMTO (Time-Memory Trade-Off) strategy was enhanced by Li's 

combination of the T-Y attack and other systems based on distinguishing points. In Li Attack, a 

random X was picked as starting position. Due to the exponential rise in the temporal complexity 

of indexing caused by a unique character in T-Y attack, its practical implementation is unfeasible. 

The TMTO strategy was enhanced by Li's combination of the T-Y attack and other systems based 

on distinguishing points. In Li Attack, a random X was picked as starting position. 
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Li attack's offline preprocessing stage utilizes 1 2( ) (1 ,1 )H X i j i k j k+ +     to determine 

the 1 2k k  initial positions. Assuming the longest possible chain length of tmax , the terminal nodes 

can be determined by applying the tmax iteration of the reduction function (1 )i maxR ti  . Chain 

computations terminate when either the chain length or the value of the current first  distinct 

points surpasses tmax+j. This phase involves the storage of chain indices, lengths, and termination 

locations.  
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The above equations show tuples stored in Li Attack. Length of the (i, j)-th chain is given by 

, where  is the remainder of bits at the ends of the chain. As part of the sorting process, tuples 

are written into a binary file. The lengths of these chains vary widely and allow categorization into 

groups of similar sizes. The data for each class can be organized in  tables. If two tuples in two 

separate tables both have the same 
j
iR , the one with the smaller value will be dropped, 

therefore, the (i, j)-th chain's offset in the j-th table is likely to be i. During the online search phase, 

the hash value Y must be calculated in order to reveal the plaintext. Discover the set of values 

where the most significant  bits of each endpoint agree with those of . In addition, a match is 

found if 
j
iR  in that table corresponds to the remaining nk2 bits of Y0 and 

j
iR  is less than or equal 

to tmax. From the first link in the chain, the original plain text may be reconstructed. If Y doesn't 

appear there, we apply 1maxtR −  and 
maxtF to it, yielding 1

1 0
t tmax max

R F
Y Y Y−⎯⎯⎯→ ⎯⎯⎯→ , and see if Y0 or Y1 

is a close enough match. If no match is found, proceed as in the rainbow table algorithm and try 

again. Since the table's data is already ordered, performing a binary search to locate a match 

requires less time. In contrast, unlike T-Y attack, the chain length of a Li attack based on 

differentiated points varies, leading to more false alarms and a slower web search. 

 

6. Countermeasures of offline password attack 

In this part, the two most effective techniques to protect individuals from an offline attack is 

explored. Adding salt to Hash is one of the most common countermeasures used in industry to 

thwart Rainbow Table attacks. Hash schemes include PBKDF2, which is implemented in IOS. In 

the context of file encryption, other countermeasures include Function Encryption, Search 

Encryption, and Homomorphic Encryption. CryptDB, as an amalgamation of some of the 

preceding encryption algorithms, is the most practical encrypted database because it strikes a good 

balance between data security and system efficiency, making it resistant to offline attacks and 

protecting database files from being compromised. First, we'll cover the topic of salt-related Hash 

schemes, and then we'll go through CryptDB, a secure database. 

(11) 

(12) 

(13) 

(14) 
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6.1. Salt-Related Hash schemes 

6.1.1. Adding Salt to Hash (Seasoning Hash with Salt) 

Adding salt to hashing is the most widely used defense mechanism against rainbow attacks 

since it prevents passwords from being cracked in bulk. If a hash value is recovered without 

employing salt, the identical passwords used by other users can be recovered via rainbow tables 

and dictionaries. Figure 4 depicts the procedure of salting hashing and authentication. 

 

Figure 4. Adding Salt to Hashing 

The server generates the user's registration password by hashing the plaintext of the 

password together with a salt. Instead of storing passwords in plaintext, databases record a salt and 

a hash value for each user. When a user logs in, the server first extracts their unique salt from the 

database, then combines the plaintext password for login with the salt before running it through a 

hashing process. The server then checks if the two hashes of the login and registration passwords 

match. In such a case, the login was successful. The password is never kept in plain text in the 

database at any stage of this procedure. Attackers that employ rainbow tables must first construct 

rainbow tables for each user, based on their passwords that have been salted randomly. Since each 

user's password has a unique hash value based on their salt, even if some passwords are recovered, 

the identical passwords used by other users will need to be cracked again. Figure 4 illustrates how 

making salt is crucial to the procedure. A rainbow table can quickly recover the hash value if the 

attacker knows the salt. A CSPRNG (Cryptographically Secure Pseudo-Random Number 

Generator) is required to generate a user-independent and random salt, such as 

java.security.SecureRandom. Using salted Hash to prevent the Rainbow Table attack is problematic 

for a few reasons. First, different salts should be used in different passwords. Second, the salt's 

length should be quite lengthy, making it prohibitively expensive to pre-calculate the Rainbow 

Table for all potential salts. 

6.2. PBKDF2: Slow Hash Algorithm 

Nevertheless, the risk of rainbow table password recovery in bulk can be considerably 

reduced by using a random salt. If an attacker has access to a large enough cluster of machines, 

they can retrieve a limited number of passwords using rainbow tables. PBKDF2 (Password-Based 

Key Derivation Function 2) is a key-stretching method that significantly raises the cost of an attack 

by mixing salt with the Hash algorithm. To enhance the expense of an attack, the slow Hash 

Algorithm based on PBKDF2 uses a large number of iterations in conjunction with salt. Figure 5 

depicts the steps of the program. 
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Figure 5. PBKDF2 Algorithm 

The procedure starts with the plaintext of the password, adds a salt and applies the Hash 

function to generate a Hash value, and then repeats this process until the maximum number of 

iterations is reached. Notable among these is the reiteration count. C sets the bounds on how many 

times the PRF must be iterated until a sufficient master key is produced. C is what sets how long it 

takes to produce the password's key. Users can increase the security of their passwords by 

increasing the number of iterations beyond what they are comfortable with. The general public is 

advised to employ at least 1,000 iterations. Iteration times of up to 10,000 are possible for 

particularly vital passwords when access to powerful computing resources is available. 

6.3. CryptDB: Encrypted Database 

Encrypting files on databases to prevent data decryption is a crucial defense against 

password attacks because offline password attacks rely on password files.  Encrypted database 

queries involving hundreds of operations using SQL might be difficult. File encryption systems like 

Privacy Homomorphic Encryption and Searchable Encryption have very high costs and make query 

operation exceedingly difficult, making it challenging to guarantee data confidentiality while 

maintaining the high performance of complicated SQL queries. High-performance Database 

Management System (DBMS) is necessary for industry applications to enhance the user 

experience. To achieve these goals, researchers at MIT's Computer Science and Artificial 

Intelligence Laboratory (CSAIL) created CryptDB in 2011 (Popa et al., 2012). This innovative 

database management system makes it possible to efficiently run SQL queries on encrypted data. 

CryptDB is a relational DBMS that offers verifiable security without requiring users to put their 

faith in the DBMS or the DBA. All data in the CryptDB system is encrypted, and the original 

DBMS may still execute SQL statements without needing to decode the data first. Initially, the 

SQL statement will be rebuilt at the front-end node. After that, the information contained in the 

statement will be encrypted and decrypted. The SQL statement's operators will be rewritten in 

some cases. The modified statement will be run immediately thereafter. CryptDB can function on 

untrusted DBMS since the database encryption key is only available to the front-end node and not 

the DBMS server. 

There are three key problems that must be fixed before SQL operations can be carried out on 

DBMS servers housing encrypted data. To begin with, the system has to be able to process a larger 

number of SQL statements (which can include CRUD activities like insert, delete, update, and 

query). Secondly, there must be an assurance of safety. Thirdly, the completed system must be 

reasonably efficient and useful in everyday life. CryptDB employs the following methods to meet 

the demands of supporting SQL statement queries that involve many operations and strategies and 

necessitate both a high security level and great efficiency. Each and every SQL statement can be 

broken down into its component parts-equality tests, order comparisons, aggregates, and joins.      
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To secure the data in the database, CryptDB employs a SQL-aware encryption technique that 

allows for the aforementioned four procedures. CryptDB is efficient in large part because the 

majority of its encryption methods employ symmetric encryption. CryptDB employs the 

customizable query-based encryption architecture known as the onion layer model to provide the 

highest security level possible in light of the varying security levels of SQL-aware encryption 

schemes that support various functions. The encryption method that satisfies semantic security is at 

the outermost layer of the onion, while the scheme with a lower security level but a more critical 

function is closer to the onion's core. By implementing UDFs, DBMS may be used without any 

changes. In the first phase, the onion layer paradigm is used to encrypt data successively deeper 

into the system, with the last layer providing semantic security. To provide users with decrypted 

cipher text in response to their queries, CryptDB will perform the following procedures. 

6.3.1. CryptDB system design 

In the same way that SQL statements are executed on plaintext in conventional databases, 

the CryptDB technology enables the DBMS server to run encrypted text SQL queries. As can be 

seen in Figure 6, CryptDB is composed primarily of two parts: the client's trusted front end and the 

server's untrusted DBMS. Since the front end is aware of the overall database's architecture and the 

layer to which the encrypted data on the server belongs, it has access to the master key. CryptDB's 

encrypted data, encryption hierarchy, and a few supporting tables are accessible to the untrusted. 

To facilitate front-end operations on the servers' encrypted text, the servers also implement some 

UDFs tailored for CryptDB. The most recent onion layer and the MK (Master Key) encrypt the 

database structure, and the server additionally retains an encrypted state of the front end. 

 

Figure 6. CryptDB System Structure 

Figure 6 depicts the steps of a CryptDB query. 

Step 1. The QRE (Query Rewriter/Encryptor) module receives the query request initiated by 

the user. Depending on the needs of the operation, QRE will encrypt the table and column names 

and use the master key to encrypt the constants in the SQL queries. 

Step 2. OKM (Onion Key Manager) is a module that receives and processes queries. In order 

to decrypt the columns that need to be modified in the UPDATE statement, this module provides 

the corresponding onion key through analysis and then invokes UDF to carry out the operation. 

Step 3. The OKM module sends the modified query statement to the untrusted back-end 

server so that it can be executed. 

Step 4. The DBMS sends back the query's results. 

Step 5. The RD (Result Decryptor) module is used to decrypt the ciphertext result before 

sending it back to the user. 
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6.3.2. SQL-Aware encryption 

CryptDB utilizes several pre-existing encryption schemes plus a custom-built encryption 

primitive for the SQL JOIN operation to enable the execution of SQL commands on the ciphertext. 

This is because CryptDB performs the same action on all column rows using the same key. 

CryptDB derives its necessary security features from interchangeable encryption techniques. These 

are the algorithms used for encryption: 

(i) RND (Random) Encryption  

When compared to IND-CCA2, RND encryption is the most secure option. It has semantic 

security and is immune to adaptively selected plaintext attacks. Semantic information is lost, and 

the cipher text becomes indistinguishable from random numbers in the cipher text space. Once 

encrypted, two identical numbers look very different from one another. However, it is impossible 

to do accurate computations using RND-encrypted cipher text. For RND encryption, CryptDB 

employs the AES-CBC algorithm in its UFE mode. 

(ii) Deterministic Encryption (DET) 

When compared to RND encryption, DET encryption is less safe. Since the encrypted form 

of two identical plaintexts is the same, decrypting it reveals the original plaintext. The server can 

execute SELECT statements with restrictions such as COUNT, JOIN, DISTINCT, GROUP 

BY, etc., and perform equivalency tests. DET encryption can be implemented in several different 

ways; one example is: 

1 2
( ) ( ) 1K K KDET RND HMAC SHA = −       (15) 

Where K1 and K2 are generated from K, and K is derived from the master key MK used by 

the table and column. The server checks for equality between values by comparing their HMAC-

SHA1 hash values. 

(iii) Order-Preserving Encryption (OPE) 

OPE permits the order of plaintext to be stored in the cipher text without revealing any other 

information about the plaintext. If  x ˂ y, then for any key K, OPEK(x)˂OPEK(y).  By using OPE to 

encrypt a column of data, the server can do range queries and operations like ORDER BY, MIN, 

MAX, and SORT. 

(iv) Homomorphic Encryption (HOM) 

HOM is secure up to an IND-CCA standard and can withstand an Adaptive Chosen Plaintext 

attack. The server can operate on the encrypted text in the same way it works on the plaintext. The 

front end receives the results of the calculations and decrypts them. The HOM of addition is more 

efficient, despite the fact that the HOM of most operations is too inefficient to be useful in practice. 

Paillier Encryption is a CryptDB feature that allows for HOM insertion (Paillier, 1999). 

Multiplying a ciphertext by itself yields the ciphertext of the plaintext sum in the Paillier method, 

as shown by the equation ( ) ( ) ( )K K KHE x HE y HE x y = + . The server first invokes UDF to 

conduct Paillier multiplication on the additional homomorphic-encrypted columns, then consults 

the public key database of CryptDB to locate K, and finally computes the plaintext and associated 

cipher text. In addition, other operations like averaging a column's value or incrementing a 

column's value can be carried out with the help of the HOM of addition. The ciphertext of any 

plaintext is always 2048 bits in length, which is a drawback of the HOM of addition. When the 

HOM of addition is excessive, the cipher text space grows quite large (Shah et al., 2023; Ying & 

Thing, 2011). 

(v) SEARCH (Search Encryption) 

CryptDB employs a SEARCH encryption protocol that permits keyword search on ciphertext 

data (Amanatidis et al., 2007; Liu et al., 2023), which is necessary for the implementation of keyword 

search functions like LIKE in SQL. SEARCH can also find duplicates within the same column. 
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(vi) Join and OPE-JOIN (JOIN)  

Since DET encryption employs unique keys for each column, a separate encryption layer is 

required to provide join operations between fields. The server can use the token received from the 

front end in conjunction with the JOIN operation to compare the values of two columns. The server 

can find pairs of equal values in distinct columns by using the JOIN operation, which also supports 

DET and SE. 

6.3.3. Adjustable Query-Based encryption 

The core of CryptDB is a dynamically configurable query-based encryption module that 

controls how much data is accessible in the untrusted server. Data is RND-encrypted if no query 

operation is required to be performed. Data will be DET-encrypted if the column will only be used 

for equivalency detection. However, the system must dynamically and adaptively select the 

encryption scheme in light of the possible query statements. CryptDB's onion encryption layer 

paradigm illustrated in Figure 7 is a means to this end. In onion encryption, one piece of data 

undergoes many transformations so that it can be queried in a variety of ways. The most secure 

forms of encryption, like RND and HOM, are located at the very edge of the network. OPE 

encryption is less secure than other methods, but it has more uses. Numbers can be stored in DET, 

OPE, and HOM onion databases that are generated by CryptDB. There is no need to make a HOM 

onion layer for string. CryptDB's front-end anonymizes the database's structure to stop the service 

from gleaning information about the database from things like table and column names. 

 

Figure 7. Onion layer model 

The ciphertext data for CryptDB is displayed in Table 1. Each piece of information can be 

encrypted with as many as three onions (for integers) or two onions (for other data types). 

Table 1. Plaintext and Cyphertext after Encryption 

 

 

 

             Plaintext                            Ciphertext 

The front end encrypts the same columns across all levels of each onion using the same key. 

Separate columns, onion layers, and data tables using unique encryption keys. The master  

key MK is used as a starting point for deriving these encryption keys. 

, , (table , column , onion , layer )t c l MKK PRP t c o l=  where PRP is a pseudorandom permutation like 

AES, is an example of an encryption key for a data table, column, and onion encryption level. The 

ID Name C1-Onion1 C1-Onion2 C1-Onion2 C2-Onion1 C2-Onion2 

23 Alice 0x2b82ae 0xcb9e4 0x234e4 0x7d35a3 0xd101e3 
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outermost layer of each onion is encrypted using the strongest encryption method. In Figure 7, we 

can see that RND encryption is used for the last layer of Onion1 and Onion2, while HOM 

encryption is used for the final layer of Onion3. Depending on the computing requirements, the 

Onion Key Management (OKM) Module decides whether to remove a layer of the onion from the 

front-end node when it gets a SQL statement from the user's application. If the associated 

encryption layer needs to be removed, the OKM module will communicate the necessary 

decryption key to the server, which will then remove the layer of encryption. Instead of altering the 

DBMS, CryptDB uses its own UDF to do the necessary onion-stripping (decryption) procedure. 

For instance, the OKM module will transmit the following operations to the server and cause the 

UDF DECRYPT_RND to be called on the server side to decode the cyphertext from the second 

column of Onion2 in Table 1 to the OPE encryption layer: 

UPDATE tableName SET C2-Onion2= DECRYPT_RND (K, C2-Onion2) 

6.3.4. Rewrite query execution 

The front-end node will obfuscate, encode, and rewrite a SQL query before passing it to a 

potentially malicious DBMS for execution. To protect the identity of the user doing the query, the 

front end modifies the table and column names. The names of the columns in Onion1 in Figure 7 

are then anonymized by the front end before the JOIN operation is implemented. When the query is 

complete, the constants will determine the encryption algorithm to use based on the layer of the 

onion where the matching column is stored in the DBMS. The existence of a database table called 

Students that contains only the identifier and the full name of each student is assumed. At startup, 

each column is encrypted using the onion model depicted in Figure 7. With RND or HOM as the 

final layer of encryption, even the server cannot deduce any information from the ciphertext data. 

The following query request is generated: 

SELECT * FROM Students WHERE name=’Bob’ 

Since an equal join on the name column is necessary for the SQL query, it must be decrypted 

to the DET layer. The following SQL is executed by the front end to remove the layer: 

UPDATE tableName SET C2-Onion1= DECRYPT_RND(K1,2,RND, C2-Onion1) 

The following SQL is then run: 

SELECT C1-Onion1, C2-Onion1 FROM tableName WHERE C2-Onion1= 0x7d35a3 

Where 'Bob' is encrypted to 0x7d35a3 with key K1,2, DET. The front end can then decrypt 

the cyphertext after obtaining the result. Front-end employs the same approach to rewrite SQL 

queries like DELETE, INSERT, and UPDATE. The front end of an INSERT statement encrypts 

the value to be inserted according to the onion level of the column to which the data is being 

entered. There is no more action necessary for the DELETE statement. The UPDATE statement is 

executed in a manner analogous to that of the INSERT statement. 

7. Conclusion 

The digital landscape is continuously challenged by offline password attacks. Making 

successful security plans requires an understanding of the techniques used by attackers, such as 

dictionary attacks and rainbow table attacks. Implementing secure password hashing techniques, 

utilizing distinctive salts, and encouraging users to use strong passwords are all necessary for 

mitigating this issue. Fortifying password security and staying one step ahead of attackers are 

continual challenges as technology develops. Nevertheless, companies and people may strengthen 

their defenses against offline password attacks and shield critical data from unwanted access by 

taking preventative actions and making a commitment to cybersecurity best practices. Due to the 

exposure of massive volumes of data records as a result of database breaches, a large number of 

passwords have been cracked offline using the disclosed data in recent years. This research 

discusses the rainbow table attack, the most effective offline password attack method. In this 

research, two updated rainbow table attack strategies are compared and contrasted. Thing and 
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Ying's new time-memory tradeoff method using rainbow table sort (TY attack), and Li's upgraded 

strategy, which combines TY attack with differentiated points (Li attack). This article also 

summarizes the efficacy of hardware, password vaults, and file encryption in protecting against 

offline password attacks and discusses their limits.  

Limitations 

Rainbow tables have historically been successful at breaking passwords, but they have a 

number of drawbacks, such as the need for storage, susceptibility to salted passwords, decreased 

effectiveness against complex passwords, incompetence for continuously hashed passwords, 

resource-intensiveness, and susceptibility to changing security countermeasures. Attackers must 

therefore take into account these restrictions and modify their strategies when trying to hack 

passwords. 

Future Work 

The development of novel authentication systems, password security improvements, and 

user education will be the main areas of future effort in the field of offline password attacks. To 

develop a safer digital environment, addressing the constantly changing spectrum of cyber hazards 

demands a multidisciplinary strategy that includes technical breakthroughs, user interaction, and 

legal and ethical considerations. 
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