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Abstract: This paper proposes a robust model predictive control method for a class of linear discrete time, 

uncertain and disturbed systems. A relationship between the system disturbance, the states and control input 

exists, which is used to remove, through several manipulations, the disturbance from the control optimization 

problem. Moreover, in comparison with other several previous studies, the disturbance does not act directly 

on the system, a system disturbance matrix being introduced. In principle, the main objective is to find a 

control law by solving a min-max problem in which a robust performance objective is to be minimized. 

Instead, an equivalent optimization problem is solved and an upper bound is found for the robust 

performance objective using a Lyapunov function. With the upper bound, the equivalent control optimization 

problem is formulated. The solutions of the equivalent optimization problem are used to construct the control 

law. A Matlab simulation, using Yalmip toolbox, indicates that the states are stabilized to zero and the 

control input tends to zero. 

Keywords: robust model predictive control, linear matrix inequality, uncertain system, disturbance, Schur 

complement. 

Control robust predictiv bazat pe model pentru o clasǎ 

de sisteme perturbate 
Rezumat: Acest articol propune o metodǎ de control robust predictiv bazat pe model pentru o clasǎ de 

sisteme liniare în timp discret, incerte şi perturbate. Existǎ o legǎturǎ între perturbaţia din sistem, stǎrile şi 

intrarea de control care este utilizatǎ pentru a elimina, prin mai multe manipulǎri, perturbaţia din problema de 

optimizare a controlului. Mai mult decât atât, în comparaţie cu alte câteva studii anterioare perturbaţia nu 

acţioneazǎ direct asupra sistemului, fiind introdusǎ o matrice de perturbaţie a sistemului. În principiu, 

obiectivul principal este de a gǎsi o lege de control prin rezolvarea unei probleme min-max în care o funcţie 

obiectiv de performanţǎ robustǎ este de minimizat. În schimb, problema de optimizare echivalentǎ este 

rezolvatǎ şi se gǎseşte o limitǎ superioarǎ pentru funcţia obiectiv de performanţǎ robustǎ folosind o funcţie 

Lyapunov. Cu limita superioarǎ, se formuleazǎ problema de control optimal echivalentǎ. Soluţiile problemei 

de optimizare echivalente sunt utilizate pentru a construi legea de control. O simulare Matlab, folosind 

instrumentul Yalmip, indicǎ faptul cǎ stǎrile sunt stabilizate la zero şi intrarea de control tinde spre zero. 

Cuvinte cheie: control robust predictiv bazat pe model, inegalitate matricialǎ liniarǎ, sistem incert, 

perturbaţie, complement Schur. 

1. Introduction 

Control theory is in charge with creating controllers that influence the behaviour of 

dynamical systems (Beghdadi, Kouzi, & Ameur, 2023; Fayti et al., 2023; Ibrahim et al., 2023; 

Kercha et al., 2023). In classical model predictive control (MPC) (Camacho & Bordons, 2007; 

Rawlings, Mayne & Diehl, 2017; Rădulescu & Ştefănoiu, 2017), a dynamic model is used to 

predict the future behaviour of the system. The purpose is to minimize a cost function of system 

performance under both input and output constraints. From the result of the optimization only the 

first control move is implemented and at the next control step the minimization is executed once 

more. Robust model predictive control also takes into consideration uncertainties and disturbances 

(Kothare, Balakrishnan & Morari, 1996; Rădulescu & Ştefănoiu, 2021) and assures that the system 

is within safe operating limits.  

Multiple scientific studies exist on robust model predictive control for systems affected by 

disturbances. In (Yang et al., 2016) is presented an observer-based output feedback predictive 

control.  The minimal ellipsoidal robust positively invariant set and observer gain are determined 

through robust positively invariant set conditions of the state estimation error. The authors in (Khan 

https://www.google.ro/search?hl=ro&tbo=p&tbm=bks&q=inauthor:%22James+Blake+Rawlings%22
https://www.google.ro/search?hl=ro&tbo=p&tbm=bks&q=inauthor:%22James+Blake+Rawlings%22
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et al., 2021) give increased degrees of freedom through a new augmented model with states and 

tracking error. The control input is determined with a parameter-dependent Lyapunov–Krasovskii 

functional. Two Model Predictive Control (MPC) methods are considered for the spacecraft at the 

final phase of the rendezvous maneuver (Mammarella et al., 2018): classical MPC and tube-based 

robust MPC. In the robust case, an offline feedback gain matrix constitutes the control law and a 

linear matrix inequality approach is applied to the feedback stabilization criterion. In (Bumroongsri 

& Kheawhom, 2017), all realizations of the state trajectory are located in offline computed tubes. 

At each time step, the tubes are included in the optimal control problem. Compared to the online 

version, the same performance is obtained while the computational time is reduced. The article (Shi 

et al., 2020) proposes a robust fuzzy predictive control with Takagi-Sugeno model composed of 

linear submodels and nonlinear membership functions. The state space is augmented with the 

output tracking error. Stable sufficient conditions are given with the Lyapunov-Krasovskii method 

and the controller gains are computed based on these conditions. In (Ping & Pedrycz, 2020) is 

studied output feedback model predictive control for Type-2 Takagi-Sugeno fuzzy systems. The 

state observer is designed offline and the controller gains for the closed-loop observer system are 

designed online. The current estimated state is steered from a robust positively invariant set to 

another one such that future states are invariant in the robust positively invariant set. In (Shi & 

Mao, 2019) a series of multi-step control sets are computed offline and the convex combination of 

them is computed online. Input-to-state stability is attained and also robustness to bounded 

disturbances. The authors consider in (Zhou et al., 2017) RBF-ARX Robust Predictive Control 

method for tracking without knowing the steady state. The linearized RBF-ARX model that 

considers the modeling error and bounded uncertain disturbance is used to design the quasi-min–

max robust MPC algorithm. Article (Limon et al., 2010) presents robust model predictive control 

under disturbances for tracking changing targets. If the target changes, the proposed method steers 

the system to the target if it is admissible. If the target is not reachable, the system is steered to the 

closest operating point. In (Hu & Ding, 2020) the current control input is computed based on the 

control from the previous sampling interval. This is one-step ahead control which solves the 

optimization during the sampling interval, the controller and real system are concurrent. The case 

of measurable and unmeasurable state is studied. The paper (Kong & Yuan, 2019) presents a 

disturbance observer and model predictive control method for a nonlinear model subject to 

disturbances. The fuzzy model predictive control law is designed on the Takagi–Sugeno fuzzy 

model. In (Ping, Wang & Zhang, 2018) is presented multi-step output feedback robust model 

predictive control approach for linear parameter varying systems with bounded disturbances. A 

sequence of controller gains is obtained corresponding to a sequence of Lyapunov matrices and 

more degrees of freedom for the optimization are introduced. Article (Mayne, Seron & Raković, 

2005) considers the initial state of the model to be a decision variable. The disturbance invariant set 

is the ‘origin’ when bounded disturbances exist and robust exponential stability of the disturbance 

invariant set is obtained. The authors in (Yu et al., 2010) present an off-line control law which 

keeps the trajectories of the error system in a disturbance invariant set. Thus, the evolution of 

system is in the disturbance invariant set which is centered along the nominal trajectory. 

The main contribution of this paper is to determine a robust model predictive control law for 

a class of disturbed systems. In comparison with (Poursafar, Taghirad & Haeri, 2010), the 

disturbances do not act directly on the system but through a disturbance system matrix and they 

have a relationship with the states and control input, so they can be removed from the control 

optimization problem. A min-max problem is defined where a robust performance objective is to be 

minimized and an equivalent problem is proposed instead where an upper bound is found on the robust 

performance objective. 

Section 2 presents mathematical preliminaries. Section 3 presents the proposed approach. 

Section 4 analyzes the simulation results while Section 5 presents the conclusions of the paper.   

2. Mathematical preliminaries 

Lemma 1 (Schur complement lemma) 

Let   be a symmetric matrix of real numbers. 
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TA B

B C

 
 =  

 
                                                                                                                                  (1) 

If C  is positive definite 0C  , then: 

10 0TA B C B−  −                                                                                                                 (2) 

 

Lemma 2 

Let 1 , 2  be real constant matrices and 3  a positive matrix. Then the following holds 

for any 0   (Poursafar, Taghirad & Haeri, 2010): 

 
1

1 3 2 2 3 1 1 3 1 2 3 2

T T T T            −+  +                                                                            (3) 

3. Robust model predictive control for a class of disturbed systems 

Consider the uncertain discrete time linear system: 

 

( 1) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

x k A k x k B k u k G k w k

A k B k G k

+ = + +


                                                                               (4)  

Where ( ) nx k  , ( ) mu k  , ( ) nww k  ,  ( ) n nA k  , ( ) n mB k  , ( ) n nwG k  . The 

polytope  , where Co  relates to the convex hull is: 

      1 1 1 2 2 2, , ,Co A B G A B G A B G   =                                                      (5) 

If  ( ) ( ) ( )A k B k G k  , then for 
1

1l

l




=

= , 0l  , 1,l = : 

    
1

( ) ( ) ( ) l l l l

l

A k B k G k A B G



=

=                                                                                (6) 

The disturbance ( )w k  is in a set ( )w k W : 

 1 1 2 2( ) | ( ) ( ) ( ) ( ) ( ) ( )T T T T TW w k w k w k x k H H x k u k H H u k=  +                                                (7) 

Where 1

n nH  , 2

m mH  . 

The proposed control law that stabilizes the system has the following form ( ) ( ) ( )u k M k x k=  and 

it is norm bounded ( )u k U , 0k  : 

 max2
( ) | ( )U u k u k u=                                                                                                               (8) 

Where *

maxu + . 

The min-max problem, with a robust performance objective to be minimized is considered for all 

 ( ) ( ) ( )A k B k G k   and ( )w k W : 

 ( | ) , 0 ( ) ( ) ( )
( | ) , 0

min max ( )
u k i k U i A k i B k i G k i

w k i k W i

J k
+   + + + 

+  

                                                                                            (9) 
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With ( )
0

( ) ( | ) ( | ) ( | ) ( | )T T

i

J k x k i k Qx k i k u k i k Ru k i k




=

= + + + + + . The matrices Q  and R  

are positive definite 0Q  , 0R   and ( | )x k i k+ , ( | )u k i k+  represent the predicted state and 

input at k i+  from time k . 

Consider ( ( | )) ( | ) ( ) ( | )TV x k i k x k i k P k x k i k+ = + +  with ( ) 0P k   in order to find an upper 

bound for the robust performance objective. Let the following inequality hold: 

( )( ( 1| )) ( ( | )) ( | ) ( | ) ( | ) ( | )T TV x k i k V x k i k x k i k Qx k i k u k i k Ru k i k+ + − +  − + + + + +  (10) 

Summing (10) from 0i =  to i = : 

 ( ) ( ) ( )
( | ) , 0

max ( ) ( ( | ))
A k i B k i G k i

w k i k W i

J k V x k k
+ + + 
+  

                                                                                      (11) 

The upper bound for the robust performance objective is thus found and the problem becomes to 

minimize ( )k  with ( ( | )) ( )V x k k k  and ( ( 1| )) ( ( | ))V x k i k V x k i k+ + − +   

( )( | ) ( | ) ( | ) ( | )T Tx k i k Qx k i k u k i k Ru k i k − + + + + +  

Theorem 1. Let ( ) ( | )x k x k k=  be the state of the uncertain system (4) at k  and 
* + , 

*

+ . The robust control law ( | ) ( ) ( | )u k i k M k x k i k+ = + , 
max2

( | )u k i k u+  , 0i  , 

*

maxu +  is given by 
1( ) ( ) ( )M k Y k X k−= , where ( ) 0X k   and ( )Y k  are the solutions of the 

optimization problem: 

( )

( ), ( ), ( )

2

max

min ( )

.

1 ( | )
0

( | ) ( )

0, 1,
( )

( ) ( ) ( )

1
( ) ( ) ( ) 0 0

0, 1,1

0 0

0 0

( ) ( )
0

( )

X k Y k k

T

T

nw l

l

T TT

l l

l l

T

m

k

s t

x k k

x k k X k

I G
l

G X k

X k A X k B Y k H QR

A X k B Y k X k
l

H

QR

X k Y k

Y k u I










 
 

 

 
 = 

 

 +
 
 

+   =+
 

 
 
 

 
 

 

                                       (12) 

With: 

1

2

( )

( )

H X k
H

H Y k

 
=  
 

, 

1

2

1

2

( )

( )

Q X k
QR

R Y k

 
 

=
 
  

,
( ) ( )1 1

1 1
,

1 1
n mdiag I I

 − −

 
  =
 +  + 
 

,                      (13) 

( )( ) , ( )n mdiag k I k I  =  
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Proof: 

The first constraint is developed ( ( | )) ( )V x k k k .  

Substitute ( ( | )) ( | ) ( ) ( | )TV x k k x k k P k x k k=  such that ( | ) ( ) ( | ) ( )Tx k k P k x k k k . Consider 

1( ) ( ) ( )P k k X k −=  such that 
1( | ) ( ) ( ) ( | ) ( )Tx k k k X k x k k k −  . 

 Thus 
11 ( | ) ( ) ( | ) 0Tx k k X k x k k−−  . Applying Schur complement lemma leads to: 

1 ( | )
0

( | ) ( )

Tx k k

x k k X k

 
 

 
                                                                                                              (14) 

  Next, substitute ( 1| )x k i k+ +  from (4) in ( ( 1| ))V x k i k+ + : 

( )

( )

( )

( ( 1| )) ( ( | ))

( ) ( | ) ( ) ( | ) ( ) ( | ) ( )

( ) ( | ) ( ) ( | ) ( ) ( | ) ( | ) ( ) ( | )

( ) ( | ) ( ) ( | ) ( ) ( ) ( | ) (

T

T

T

V x k i k V x k i k

A k i x k i k B k i u k i k G k i w k i k P k

A k i x k i k B k i u k i k G k i w k i k x k i k P k x k i k

A k i x k i k B k i u k i k P k A k i x k i k B k i

+ + − + =

= + + + + + + + + 

 + + + + + + + + − + + =

= + + + + + + + + +( )

( )

( )

) ( | )

( ) ( | ) ( ) ( | ) ( ) ( ) ( | )

( | ) ( ) ( ) ( ) ( | ) ( ) ( | )

( | ) ( ) ( ) ( ) ( | ) ( | ) ( ) ( | )

T

T T

T T T

u k i k

A k i x k i k B k i u k i k P k G k i w k i k

w k i k G k i P k A k i x k i k B k i u k i k

w k i k G k i P k G k i w k i k x k i k P k x k i k

+ +

+ + + + + + + + +

+ + + + + + + + +

+ + + + + − + +

(15) 

Lemma 2 is used for (15) with 
* +  and the following is obtained: 

( )

( )
1

( ( 1| )) ( ( | ))

(1 ) ( ) ( | ) ( ) ( | ) ( )

( ) ( | ) ( ) ( | )

(1 ) ( | ) ( ) ( ) ( ) ( | ) ( | ) ( ) ( | )

T

T T T

V x k i k V x k i k

A k i x k i k B k i u k i k P k

A k i x k i k B k i u k i k

w k i k G k i P k G k i w k i k x k i k P k x k i k



 −

+ + − + 

 + + + + + + 

 + + + + + +

+ + + + + + − + +

         (16) 

In order to obtain in (16) ( | ) ( | )Tw k i k w k i k+ +  instead of 

( | ) ( ) ( ) ( ) ( | )T Tw k i k G k i P k G k i w k i k+ + + + , a constraint is added to the optimization problem 

with 
*

+ : 

( ) ( ) ( ) ( )T

nwG k i P k G k i I k+ +                                                                                                (17) 

If 
1( ) ( ) ( )P k k X k −= , then 

1( ) ( ) ( ) ( ) ( )T

nwG k i k X k G k i I k −+ +   . Dividing by ( )k  

results in 
1( ) ( ) ( )T

nwG k i X k G k i I−+ +   . Schur complement lemma is applied next: 

( )
0

( ) ( )

T

nwI G k i

G k i X k

  +
 

+ 
                                                                                                           (18) 

If the following hold for 1,l = , then (18) holds. These constraints are added to the optimization 

problem: 

0, 1,
( )

T

nw l

l

I G
l

G X k


 
 = 

 

                                                                                                          (19) 

Thus, from (17), ( ) ( ) ( ) ( ) 0T

nwG k i P k G k i I k+ + −   and because it is negative semi-definite, 
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the inequality holds for any ( | )w k i k+  such that:  

( )( | ) ( ) ( ) ( ) ( ) ( | ) 0T T

nww k i k G k i P k G k i I k w k i k+ + + − +  .  

So, ( | ) ( ) ( ) ( ) ( | ) ( ) ( | ) ( | )T T Tw k i k G k i P k G k i w k i k k w k i k w k i k+ + + +   + + . 

In the following, (16) becomes: 

( )

( ( 1| )) ( ( | ))

(1 ) ( ) ( | ) ( ) ( | ) ( )
T

V x k i k V x k i k

A k i x k i k B k i u k i k P k

+ + − + 

 + + + + + + 
 

( )
1

( ) ( | ) ( ) ( | )

(1 ) ( ) ( | ) ( | ) ( | ) ( ) ( | )T T

A k i x k i k B k i u k i k

k w k i k w k i k x k i k P k x k i k −

 + + + + + +

+ +  + + − + +
                                    (20) 

Knowing that: 

 1 1 2 2( | ) ( | ) ( | ) ( | ) ( | ) ( | )T T T T Tw k i k w k i k x k i k H H x k i k u k i k H H u k i k+ +  + + + + +  

leads to: 

( )

( )
1

1 1 2 2

( ( 1| )) ( ( | ))

(1 ) ( ) ( | ) ( ) ( | ) ( )

( ) ( | ) ( ) ( | )

(1 ) ( ) ( | ) ( | ) ( | ) ( | )

( | ) ( ) ( | )

T

T T T T

T

V x k i k V x k i k

A k i x k i k B k i u k i k P k

A k i x k i k B k i u k i k

k x k i k H H x k i k u k i k H H u k i k

x k i k P k x k i k



 −

+ + − + 

 + + + + + + 

 + + + + + +

 + +  + + + + + − 

− + +

                 (21) 

If 

( )( ( 1| )) ( ( | )) ( | ) ( | ) ( | ) ( | )T TV x k i k V x k i k x k i k Qx k i k u k i k Ru k i k+ + − +  − + + + + + then 

the following inequality is imposed using (21): 

( )

( )

( )

1

1 1 2 2

(1 ) ( ) ( | ) ( ) ( | ) ( )

( ) ( | ) ( ) ( | )

(1 ) ( ) ( | ) ( | ) ( | ) ( | )

( | ) ( ) ( | ) ( | ) ( | ) ( | ) ( | )

T

T T T T

T T T

A k i x k i k B k i u k i k P k

A k i x k i k B k i u k i k

k x k i k H H x k i k u k i k H H u k i k

x k i k P k x k i k x k i k Qx k i k u k i k Ru k i k



 −

+ + + + + + 

 + + + + + +

 + +  + + + + + − 

− + +  − + + + + +

         (22) 

Substituting ( | ) ( ) ( | )u k i k M k x k i k+ = +  leads to the following. 

 

( )

( )
1

1 1 2 2

(1 ) ( ) ( | ) ( ) ( ) ( | ) ( )

( ) ( | ) ( ) ( ) ( | )

(1 ) ( ) ( | ) ( | ) ( | ) ( ) ( ) ( | )

( | ) ( ) ( | )

( | ) ( | ) (

T

T T T T T

T

T T

A k i x k i k B k i M k x k i k P k

A k i x k i k B k i M k x k i k

k x k i k H H x k i k x k i k M k H H M k x k i k

x k i k P k x k i k

x k i k Qx k i k x k



 −

+ + + + + + 

 + + + + + +

 + +  + + + + + − 

− + + 

 − + + + +( )| ) ( ) ( ) ( | )Ti k M k RM k x k i k+

  (23) 

Inequality (23) is equivalent to: 
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( ) ( )

( )

( )

1

1 1 2 2

(1 ) ( | ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( | )

(1 ) ( ) ( | ) ( ) ( ) ( | )

( | ) ( ) ( | )

( | ) ( | ) ( | ) ( ) ( ) ( | )

TT

TT T

T

T T T

x k i k A k i B k i M k P k A k i B k i M k x k i k

k x k i k H H H M k H M k x k i k

x k i k P k x k i k

x k i k Qx k i k x k i k M k RM k x k i k



 −

+ + + + + + + + + +

 + +  + + + −
 

− + + 

 − + + + + +

(24) 

Grouping the terms in function of ( | )x k i k+  leads to: 

( ) ( )

( )1 1

1 1 2 2

( | ) (1 ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

(1 ) ( ) (1 ) ( ) ( ) ( ) ( )

( ) ( ) ( | ) 0

TT

TT

T

x k i k A k i B k i M k P k A k i B k i M k

k H H k H M k H M k P k Q

M k RM k x k i k



   − −

+ + + + + + + + +

+ +  + +  − + +

+ + 

               (25) 

If 0S   then ( | ) ( | ) 0Tx k i k Sx k i k+ +  , so ( | )x k i k+  is not considered anymore: 

( ) ( )

( )

1

1 1

1

2 2

(1 ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (1 ) ( )

(1 ) ( ) ( ) ( ) ( ) ( ) ( ) 0

T T

T T

A k i B k i M k P k A k i B k i M k k H H

k H M k H M k P k Q M k RM k

  

 

−

−

+ + + + + + + + +  +

+ +  − + + 
   (26) 

Substitute 
1( ) ( ) ( )P k k X k −=  in (26): 

( ) ( )

( )

1

1 1 1

1 1 2 2

(1 ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

(1 ) ( ) (1 ) ( ) ( ) ( ) ( ) ( )

( ) ( ) 0

T

TT

T

A k i B k i M k k X k A k i B k i M k

k H H k H M k H M k k X k Q

M k RM k

 

    

−

− − −

+ + + + + + + +

+ +  + +  − + +

+ 

              (27) 

Divide by ( )k−  in (27): 

( ) ( )

( )

1 1

1 1

1 1

2 2

(1 ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (1 )

1 1
(1 ) ( ) ( ) ( ) ( ) ( ) 0

( ) ( )

T T

T T

A k i B k i M k X k A k i B k i M k H H

H M k H M k X k Q M k RM k
k k

 


 

− −

− −

− + + + + + + + − +  −

− +  + − − 
(28) 

Multiply on the left with ( )TX k  and on the right with ( )X k  and semi-definiteness is preserved. 

( ) ( )

( ) ( )

( )

1

1 1

1 1 2 2

1

(1 ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

(1 ) ( ) ( ) (1 ) ( ) ( ) ( ) ( )

1 1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0

( ) ( )

T

T T

TT T

A k i X k B k i M k X k X k A k i X k B k i M k X k

H X k H X k H M k X k H M k X k

X k X k X k X k QX k M k X k RM k X k
k k



 

 

−

− −

−

− + + + + + + + −

− +  − +  +

+ − − 

(29) 

Denote ( ) ( ) ( )Y k M k X k=  such that (29) becomes the following. 

( ) ( )

( ) ( )

1

1 1

1 1 2 2

(1 ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

(1 ) ( ) ( ) (1 ) ( ) ( )

1 1
( ) ( ) ( ) ( ) ( ) 0

( ) ( )

T

T T

T T

A k i X k B k i Y k X k A k i X k B k i Y k

H X k H X k H Y k H Y k

X k X k QX k Y k RY k
k k



 

 

−

− −

− + + + + + + + −

− +  − +  +

+ − − 

                (30) 

If 

1

2Q  and 

1

2R  are the square roots of Q  and R , then: 
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( ) ( )

( ) ( )

1

1 1

1 1 2 2

(1 ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

(1 ) ( ) ( ) (1 ) ( ) ( ) ( )

T

T T

A k i X k B k i Y k X k A k i X k B k i Y k

H X k H X k H Y k H Y k X k



 

−

− −

− + + + + + + + −

− +  − +  + −
 

 

1 1 1 1

2 2 2 2
1 1

( ) ( ) ( ) ( ) 0
( ) ( )

T T

Q X k Q X k R Y k R Y k
k k 

   
− −    

   
                                                   (31) 

Inequality (31) is equivalent to: 

1( ) 0TX k −−                                                                                                                         (32) 

Where: 

( ) ( ) ( ) ( )A k i X k B k i Y k

H

QR

+ + + 
 

 =  
 
 

, 
1

2

( )

( )

H X k
H

H Y k

 
=  
 

, 

1

2

1

2

( )

( )

Q X k
QR

R Y k

 
 

=
 
  

 ,                            (33) 

1
( ), ,

1
diag X k 



 
 =  

+ 
, 

1 1

1 1
,

(1 ) (1 )
n mdiag I I

 − −

 
 =  

+  +  
,  

( )( ) , ( )n mdiag k I k I  =  

Schur complement lemma is applied to obtain: 

( )( ) ( ) ( ) ( ) ( )

1
( ) ( ) ( ) ( ) ( ) 0 0

01

0 0

0 0

T TT
X k A k i X k B k i Y k H QR

A k i X k B k i Y k X k

H

QR





 + + +
 
 

+ + +  +
 

 
 
 

             (34) 

Because ( )A k i+  and ( )B k i+  are time dependent, it is necessary to express the inequality in 

function of the polytope elements. 

( )( ) ( ) ( )

1
( ) ( ) ( ) 0 0

0, 1,1

0 0

0 0

T TT

l l

l l

X k A X k BY k H QR

A X k BY k X k
l

H

QR





 +
 
 

+   =+
 

 
 
 

                                       (35) 

If  ( )( ( 1| )) ( ( | )) ( | ) ( | ) ( | ) ( | )T TV x k i k V x k i k x k i k Qx k i k u k i k Ru k i k+ + − +  − + + + + +  

and 0Q  , 0R  , then ( ( 1| )) ( ( | ))V x k i k V x k i k+ +  + . It is known that ( ( | )) ( )V x k k k , 

so ( ( 1| )) ( )V x k k k+  . On the same principle ( ( | )) ( )V x k i k k+  , 0i   and 
1( | ) ( ) ( | ) 1Tx k i k X k x k i k−+ +   because 

1( ) ( ) ( )P k k X k −= . Thus, E  is an invariant 

ellipsoid for the predicted states of the system: 

 1| ( ) 1TE X k  −=                                                                                                                (36) 

The input constraint is the following. 
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2
1 1

22 1 2 2

2 20 0 0
2

2 2
1 1 1 1 1

2 2 2 2 2
max

2 2

max ( | ) max ( ) ( ) ( | ) max ( ) ( ) ( ) ( | )

max ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

i i i

T

E

u k i k Y k X k x k i k Y k X k X k x k i k

Y k X k X k Y k X k X k Y k Y k X k


 

− −
−

  

− − − − −



+ = + = + 

 
  =  

 

 (37) 

The bound is maxu , so 
2 2

max2
( | )u k i k u+   is combined with (37). Impose the constraint: 

 

1 1

22 2
max( ) ( ) ( ) ( )T

nX k Y k Y k X k u I
− −

                                                                                             (38) 

Multiply on the left and on the right with 

1

2 ( )X k  such that: 

2

max( ) ( ) ( )TY k Y k u X k                                                                                                                  (39) 

Applying Schur complement lemma results in: 

2

max

( ) ( )
0

( )

T

m

X k Y k

Y k u I

 
 

 
                                                                                                                     (40) 

                                                                                                                                                             

4. Numerical results 

Matlab with Yalmip toolbox (Lofberg, 2004) is used to implement the presented algorithm in the 

previous section. The matrices of the polytope are: 

1

13.0980 5.8441 5.7893

5.8441 16.2606 5.3504

5.7893 5.3504 7.6497

A

− − 
 

= − − −
 
 − − 

, 2

13.0980 5.8441 6

5.8441 16.2606 5.3504

6 5.3504 7.6497

A

− − 
 

= − − −
 
 − − 

, 

1

1.2075 0

0.7172 1.0347

1.6302 0.7269

B

− 
 

=
 
  

, 2 1B B= , 1

0.001

0.001

0.001

G

 
 

=
 
  

, 2

0.002

0.002

0.002

G

 
 

=
 
  

                                             (41) 

 1 2 3( ) ( ) ( ) ( )
T

x k x k x k x k=  

The disturbance is 
1

1( ) 10 ( )w k x k−= . The simulation parameters are: 

 (0) 0.1 0.01 0.2
T

x = , max 10u = , 1 = , 10 = , 310Q I= , 210R I= , 

 1

0.1 0 0

0 0.1 0

0 0 0.1

H

 
 

=
 
  

, 2

0.1 0

0 0.1
H

 
=  
 

                                                                                    (42) 

The following Figures (1-5) indicate the simulation results. From Figures 1-3 one can easily 

see that the states of the system tend to 0. As a result the proposed control approach stabilizes the 

system. From Figures 4-5 one can easily see that the control input tends to 0. Figure 6 displays the 

disturbance that acts on the system. 
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                 Figure 1. State 1( )x k  stabilized                    Figure 2. State 2 ( )x k  stabilized 

 

  
             Figure 3. State 3 ( )x k  stabilized                 Figure 4. Control input 1( )u k   

 

  
                      Figure 5. Control input 2 ( )u k                  Figure 6. Disturbance ( )w k  

5. Conclusions 

Disturbances are uncontrollable influences which affect the output of the system. The result 

of a disturbance is an increase of the error in the system. An example of a disturbance is the 

sunlight in a hot summer day in a room which is regulated by an air conditioner. The thermostat 

has to make now more effort to control the temperature to the desired setpoint.  

In this article, a robust model predictive control method for a class of disturbed systems was 

presented. The aim was to minimize a robust performance objective. In order to solve the 

optimization problem an upper bound for the robust performance objective was found. An 

equivalent optimization problem was formulated with the help of this bound. The solutions of this 

optimization problem were used to construct the control law. Instead of having a disturbance that 



Romanian Journal of Information Technology and Automatic Control, Vol. 34, No. 1, 69-80, 2024 79 

 www.rria.ici.ro 

directly affects the system, a disturbance matrix was introduced. Based on the relationship of the 

disturbance with the states and control signals, the disturbance was removed from the computations 

needed to formulate the equivalent problem.  

Some examples of potential applications of the proposed robust model predictive control are: an 

autonomous underwater robot control, a greenhouse temperature control, a trajectory tracking 

control of robotic manipulators, a three-phase permanent-magnet synchronous motor control etc.  
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