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Abstract: Tube Hydroforming (THF) is a relatively new manufacturing process mainly used in the 

automotive industry from the past decades, offering potential alternatives to lightweight materials. THF can 

significantly govern saving energy, offering several advantages over stamping and welding processes. 

Automotive sectors require complex-shaped extruded hollow tubes due to free-forming and calibration. THF 

requires less thinning to provide improved structural strength and stiffness. Lightweight vehicle units 

requiring less maintenance if THF are implemented with less formable Inconel 600 tubes. The impact of 

Hydroforming parameters (HFP) like P (internal pressure), L (axial movement), and F (tube length) on the 

tube output’s quality like Bulging and Thinning ratios (BR&TR) are studied. RSM (Response surface 

methodology) was employed to develop empirical relations between HFP and experimental outputs. Particle 

Swarm Optimization (PSO) algorithm is applied to obtain a large amount of optimized data set for HFPs 

combination while simultaneously enhancing BR and reducing TR. Genetic algorithms improve the Pareto 

front optimized solutions of PSO’s accuracy by prolonging convergence. Increasing P and L parameters 

values will significantly affect the output’s quality. Proposed methods have performed outstanding (they 

avoided tube’s local necking and failures like wrinkle and bursting) and the results were not possible with 

other techniques. 
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1. Introduction 

Hydroforming came into existence from 1940 to 1950 to reduce manufacturing costs for the 

forming process of production compared to deep drawing components in small quantities (Davis, 

1945). Later in 1990, an/ automotive field was increasingly attracted by the Hydroforming (HF) 

method, a forming process using highly pressurized water /fluids to bend each component either by 

tube or sheet hydroforming. A straight or pre-bent tube-shaped blank of required length held 

between the die, which is closed with necessary clapping force in tube HF. Subsequently, an axial 

force (AF) at the two ends of the tube is employed to bend the tube following the die shape using 

highly pressurized water mixed with emulsion/ liquid into the pipe by engaging with axial cylinders, 

the leakages of the liquid at both ends of the tube is prevented. High pressure exists inside the tube 

where its material starts yielding and takes on the die cavity shape such that the component is 

molded. Various experimentation and analytical investigations of bulge shaped tube HF assumed 

that the entire tube length under tension and corresponding results for free bulge were reported 

(Woo et al., 1973). The effect of lubricant and material (copper, brass, low carbon steel, and 

aluminum) on HF using the T-shaped die under the oil-pressurizing medium is studied. Results are 

shown as a function extrusion height accomplishable (Limb, Chakrabarty, Garber & Roberts, 1976 ). 

 The actual strain around necking using pre-strain value, strain-hardening exponential (SHE) 

value, and stress ratio was derived (Sauer, Gotera, Robb & Huang, 1978). Using experiments and 

thorough analysis of stresses and strains in case of anisotropy sheet metals by following “Hill’s 

theory of plastic anisotropy” is explained (Woo & Woo, 1978). The impact of the SHE and 

material anisotropy property on components produced by bulge hydroforming is explained with the 

maximum pressure. It was applied inside the tube as a blank tubular diameter, thickness, SHE, and 

strength coefficient considering without AF examined (Chebbah et al., 2016; Rudraksha et al., 

2017). Deforming ability and forming limits of thin-walled Al pipes were examined under the 

combined effect of internal pressure (IP) and AF regulated using a computer-based regulator to 

obtain a prespecified stress ratio (Manabe, Mori & Suzuki, 1984). The impact of material 
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properties (such as SHE, plasto-anisotropic, and surplus compression stress) on free bulge HF has 

been investigated (Fuchizawa et al., 1987; Manabe et al., 2002). The impact of IP and axial length 

on extrusion height and height of components on ‘T’ and X shaped Al alloy tube were examined 

(Fuchizawa, Narazaki & Yuki, 1993). The deformation of axisymmetric components and T- shaped 

parts by enlargement due to IP and strengthening by AF were studied (Dohmann & Hartl, 1996). 

The impact of various input factors of “Bulge Tube Hydroforming” (BTHF)was widely explained 

with the structured, logical models ( Ahmed, & Hashmi, 1997). These models are employed to find 

the constraints of free THF, the effect of control variables on the loading path, and the deformation 

during their experimentation (Asnafi et al., 2020).  

Many numerical simulation sequences and trials were conducted to investigate the tube 

forming ability (Manabe, Mori & Suzuki, 1984).  A self-feeding procedure was suggested to reduce 

the explore for loading pathways to an appropriate reign of curves. They are only suitable for 

axisymmetric BTHF parts and not suitable for T and Y-shaped parts (Manabe & Amino, 2002). 

Optimal loading pathways via different optimization techniques like sensitivity analysis and 

response surface were suggested (Yang et al., 2001; Genlin et al., 2002). The “Finite Element” (FE) 

analysis using the sequence of simulations with commercial FE code was used to investigate the 

cold-HF of a T shape parts (like fluid elongation, AF, and the opposing force) for bursting mode. 

Comparatively, it is seen as a non-recoverable failure mode than buckling and wrinkling modes in 

the BTHF process (Rudraksha & Gawande, 2017). FE analysis of BTHF for evaluating explosion 

failure of ductile based fracture criterion using stress-strain results was briefed ( Kim, Kang, & 

Kang, 2003). The explosion failure was predicted in BTHF, considering the plastic variability by 

adopting a rising theory of plasticity in anisotropic material and the HF. The stress regulating 

diagram was predicted from the scattered necking principle (Kim, Song, Kang & Kim, 2009). 

Optimization technique (HEEDS software) accompanying the FEA (LS-DYNA) was used for 

improving the forming factors in BTHF of high-strength steels. They maximize forming capability 

by evaluating an optimal set of characteristics like IP and AF (Abedrabbo et al., 2009). The inverse 

of FEA for anisotropic THF of T and Y shaped parts using classical EDIA of ABAQUS software 

was carried out [4]. FE simulations and experimental results of BTHF on finding the impact of 

factors shown a higher SHE. Selection of anisotropic substance for tube brings good forming 

capability and maintaining appropriate lubrication get the uniform wall thickness distribution 

(Asnafi et al., 2020).  

From the literature, few gaps like the deformation behavior of superalloy Inconel 600 during 

THF have not yet been sufficiently clarified. Further research work demands to know whether 

forming capability and characteristics differ from changing the material. Proposed work includes 

investigation on the impact of HF input parameters (HFIP) such as IP, AF, and tube length on the 

output characteristics to maximize bulge and minimum thinning of the tube without necking failure 

in THF. Also, the aim is to determine the optimal set of factors simultaneously satisfying the 

conditions and forecasting the empirical form of models for the outputs of THF. It is observed that 

the standard modeling tools applied for the analysis of the THF as of today are the Taguchi 

technique, Grey Relational Analysis, “Artificial neural networks” ANN and other simulation tools 

like LS DYNA, Workbench, etc., (Yunus et al., 2016; Yunus et al., 2018; Yunus et al., 2019; 

Yunus et al., 2019; Yunus et al., 2020). These have certain limitations, such that they cannot find 

more than one quantitative relationship between the HFIP and the responses, the accurate selection 

and control of HFIP for optimum performance.  

Hence, effective, efficient, and economical utilization of THF requires a precise modeling 

and optimization methodology. The literature review reveals that the PSO (Particle swarm 

optimization) is effective, inexpensive, and comparatively easy to use and yields accurate process 

models with a maximum HFIP combination to use as a reference manual. This method has been 

widely used for process modeling of several manufacturing processes. This method has not been 

applied for modeling tube hydroforming parameters of Inconel 600 tubes to the/our best knowledge. 

Besides, chosen responses, i.e., bulge ratio (BR), thinning ratio (TR), have been modeled and 

optimized for the first-time using Minitab statistical and MATLAB programming. From literature, 

the optimization methods used in earlier work were predominantly Taguchi based. Hence, in this 

work, a population-based algorithm called a genetic algorithm, and the Pareto front solution 
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method, multi objectives using PSO technique are used to optimize the chosen objective functions. 

The obtained solutions from optimization tool of MATLAB will be used as data sets for attaining 

maximum BR with minimum TR to utilize as reference manual in future satisfying various 

conditions of the process. 

2. Materials and methodology 

The 200-ton capacity THF machine has a controller for regulating IP and AF inputs 

automatically using computer programming under the different strain paths with die arrangement 

for the free bulge tests. A horizontally placed tube held between the two die portions and hydraulic 

ram is applied with a satisfactory clamping force in the free bulge test. After closing two half 

sections of dies properly, both axial punches were forwarded for closing both ends to protect the 

tube for applying the AF (maximum capacity of 40 tons) to feed extra material in the expansion 

region. The maximum F required is less than one-fourth of its capacity as higher than this leads to 

buckling or wrinkle effect of the tube. The water is filled in the tube using the punch's left side and 

then its movement back and forth to remove excess air and seal the tube again. The IP and AF are 

regulated, and bulge height of heat-treated Inconel 600 tubes having fixed diameter (57.15mm) and 

thickness (1.45mm) with varying lengths (195mm, 210mm, and 225mm) is measured using “Linear 

variable Differential Transducer” (LVDT).  

Using “Programmable Logical Controller” (PLC) and emergency stop, the required loading 

path is regulated with the program provided to it. All the dimensions and Inconel 600 mechanical 

characteristics of the tube were delivered before running the free bulge test (refer to Figure 1) of 

THF. The aim is to attain maximum bulging defined by BR without any failure. The optimized 

input factors are achieved by developing the mathematical expressions for predicting the responses. 

The procedures suggested in the present investigation may be used to predict the empirical models. 

Further, these empirical models can be solved by using any evolutionary algorithms. 

 

Figure 1. Tube hydroforming technique [9] 

 

Several scholars worked for the advancement of the THF process to simplify the process and 

make suitable for forming. To decrease the number of trials for examining the impact of HFIP on 

the THF process for minimizing the cost is condensed as per Taguchi orthogonal array (OA) 

without upsetting the quality of the analysis because of its successful application in metal forming 

(Sokolowski et al., 2000; Yang et al., 2001). L9 OA is selected to study the conduction of tests on 

an annealed Inconel 600 tube and convert the trial results into mathematical equations by RSM 

(response surface methodology). MM's competence developed by RSM is inspected using ANOVA 

(analysis of variance) provided R2 (regression coefficient) value. Also, surface plots will be studied 

for the impact of HFIP on the maximization of BR and minimization of TR using Minitab digital 
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software. Two process responses namely, BR denoted by Df/Do (Df and Do are the final and original 

diameter at bulge point and TR represented by (Ti-Tf) / Ti, (where Ti and Tf are the original and 

final thickness at the highest bulging spot) are indicated in Figure 2. 

 

Figure 2. Free bulge Specifications of hydroforming technique  

(Sokolowski, Gerke, Ahmetoglu & Altan, 2000)  

 

From the previous research and pilot experiments, it is noticed that the inside pressure (P), 

axial movement (F), and tube length (L) are the most guiding factors affecting the maximum BR 

and minimum TR variation of the tube. Three HFIPs were selected, altering one each time; nine expe-

riments were carried using the THF facility to find each HFIP's working levels as given in Table 1.  

Table 1. Various levels of process variables 

Input variables and Notations Units 
Levels 

1 2 3 

Internal Pressure (P) Bar 225 250 275 

Axial Movement (F) mm/sec 0.2 0.35 0.5 

Length of the Tube (L) Mm 190 210 230 

 

The responses maximum bulge after hydroforming, toolmakers microscope, and digital 

micrometer are used. The samples were then cut into two halves horizontally to measure the bulge 

and thickness after THF using above said instruments. For every response combination, the result is 

noted by an average of three values at three different locations of the maximum bulge point and 

recorded as listed in Table 2. The present research explores the impact of factors on the maximum 

bulge and minimum thickness variation.  

Table 2. L9 Experimental observations as per Taguchi design 

S.No. 
Pressure 

(P) 

Axial Force 

(F) 

Tube Length 

(L) 
Df Tf Df/Do (Ti-Tf)/Ti 

1 225 0.20 190 82.87 1.291 1.45 0.11 

2 225 0.35 210 62.87 1.25 1.10 0.14 

3 225 0.50 230 68.58 0.97 1.20 0.33 

4 250 0.20 210 88.59 1.26 1.55 0.13 

5 250 0.35 230 57.72 1.09 1.01 0.25 

6 250 0.50 190 69.72 1.10 1.22 0.24 

7 275 0.20 230 85.72 1.25 1.50 0.14 

8 275 0.35 190 86.87 1.28 1.52 0.12 

9 275 0.5 210 66.3 1.00 1.16 0.31 
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2.1. GA based PSO technique for Multi-Response Optimization using MATLAB 

programming 

On account of conflicting kinds of response qualities like BR and TR, the one set of 

optimized value of factors does not justify the objectives. To get many sets of optimized values for 

a combination of factors, under such a scenario, an evolutionary algorithm-based Multi-objective 

Optimization using Particle Swarm Optimization (MRPSO) provides improved performance when 

compared with the customary improvement strategies. Each data in the group has a flying velocity 

of Vm(l) into the demonstration space is characterized along with the position Ym(l) vector. Several 

input variables articulate their constituents. Alterations of the data location use its previous position 

details and its current velocity (Walker et al., 2017). Thus, 

Vm (l + 1) = Vm (l) + c1rand1 (Pbestm – Ym(l)) + c2rand2 (Gbestm – Ym(l))     (1) 

Ym (l+ 1) = Vm (l) + Vm (l + 1)           (2) 

where Ym (l) and Vm (l) are the current position and velocity at iteration h; Gbestm and Pbestm "global 

and the personal best position of particle "m; c1, c2, and rand " the cognition, social learning rate, 

and the random numbers varying between 0 to 1" respectively. To prevent a violent increase in 

velocity and the ambiguous random numbers instigated by the stochastic process of the 'search 

algorithm' in velocities updated in PSO, the Pareto front in combination with a genetic algorithm 

by conducting MRPSO will be used. 

Multiple-response conditions provide an optimized group of HFIPs otherwise, optimizing 

individually, each response comprises conflicting solutions like one objective is improving by 

declining others in their final solution. The general and straightforward method is by establishing 

an absolute Pareto-front-solutions group or a graphic subgroup. The non-dominated (ND) are 

improved solutions obtained by reducing one or more responses, and by running an optimization of 

multi-output, a group of ND results will be obtained. A Pareto group is obtained by stabilizing the 

process within disagreeing responses. The projected work is to obtain an optimized combination set 

of HFIPs for maximum BR and minimum TR. 

3. Results and discussion 

3.1. Empirical modeling, adequacy tests like ANOVA and multiple R2 for THF 

using RSM 

The trial's output data from Table 2 are employed in Minitab statistical software (Yunus & 

Alsoufi, 2020), which computes the developed correlational model's (CM) regression coefficients. 

The polynomial fit conditions are detailed for the following Eqs (3) and (4) 

BR = 8.8 - 0.0028 P + 2.14 F - 0.0682 L - 0.0625 P*F + 0.000149 P*L + 0.0605 F*L        (3) 

TR = 3.56 - 0.0130 P - 1.93 F - 0.0174 L + 0.0011 P*F + 0.000063 P*L + 0.0110 F*L      (4) 

 

ANOVA for the output responses BR & TR are specified in Tables 3 and 4, respectively, 

where generally models are considered vital if Probability >F but less than 0.05.  BR and TR's 

ANOVA results (refer to Tables 3 and 4) show that the developed CMs are significant. 

Furthermore, to ensure the excellent agreement between developed models and the experiments, 

the multiple regression coefficients (R2); the CMs to total experimental variability ratio are used to 

check the fitness level (Fuchizawa, Narazaki & Yuki, 1993). In this work, R2 is very close to 1 

indicates that the developed EMs are important and fit the experimental results. Referring to Tables 

3, and 4, R2=0.94 (for BR) and 0.95 (for TR) represents that the EMs results fit experimental values 

up to 94%, and 0.95 respectively.   
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Table 3. ANOVA results of BR 

Basis 
Degree of 

Freedom 
Adjusted SS Adjusted MS 

F-statistics 

Value 

Probability 

Value 

Model 6 0.055800 0.009300 4.89 0.179 

Linear 3 0.045770 0.015257 8.03 0.113 

P 1 0.000572 0.000572 0.30 0.638 

F 1 0.025752 0.025752 13.55 0.067 

L 1 0.005038 0.005038 2.65 0.245 

2-Way Interaction 3 0.003700 0.001233 0.65 0.653 

P*F 1 0.000021 0.000021 0.01 0.925 

P*L 1 0.001152 0.001152 0.61 0.518 

F*L 1 0.001260 0.001260 0.66 0.501 

Error 2 0.003800 0.001900   

Total 8 0.059600    

 R2 97.62% R2 (adjusted) 94.50%  

 

Note: “Sum-of-Square (SS)” denotes the sum of squared differences from the average, and 

“Mean Square (MS)” value is computed by dividing a SS by the corresponding degrees of freedom. 

The adjusted R2 of BR (refer to Table 4) is 0.9582is close to actual R2 indicating that the 

developed model is adequate to handle variation. Similarly, TR satisfies the adequacy conditions as 

detailed in Table 4. 

Table 4. TR from ANOVA results 

Basis 
Degree of 

Freedom 

Adjusted F-statistics 

Value 

Probability 

Value SS MS 

Model 6 0.296819 0.049470 2.70 0.295 

Linear 3 0.277389 0.092463 5.04 0.170 

P 1 0.069215 0.069215 3.78 0.191 

F 1 0.035438 0.035438 1.93 0.299 

L 1 0.102021 0.102021 5.56 0.142 

2-Way 

Interaction 
3 0.086536 0.028845 1.57 0.411 

P*F 1 0.064038 0.064038 3.49 0.203 

P*L 1 0.006438 0.006438 0.35 0.614 

F*L 1 0.038402 0.038402 2.09 0.285 

Error 2 0.036670 0.018335   

Total 8 0.333489    

 R2 95.00% R2(adjusted) 93.02%  

http://www.rria.ici.ro/


Romanian Journal of Information Technology and Automatic Control, Vol. 31, No. 3, 15-30, 2021 21 

 http://www.rria.ici.ro 

Also, these CMs are tested for competence utilizing NPD (normal probability distribution) of 

residuals. Thus, the NPD of residuals of both outputs show all detailed data distribution is nearer 

line means adequacy is very much acceptable (Mohanty, Mahapatra & Singh, 2016).  In both 

outputs (BR, TR), the distribution of data values is seen very near to or on the line of plots shown 

in Figure 3 (a) and 3 (b), signifying that the distribution of the errors is normal.  

      

                                    (a)                                                                   (b) 

Figure 3. Normal probability distribution of residuals for (a) BR (b) TR 

3.2. Confirmation experiments 

The empirical equations of RSM are validated with the trial results using the combinations of 

HFIPs for BR and TR if deviation lies within limits. Percentage deviation is found by comparing 

the predicted and actual trial results presented in Table 5 by the ratio of the difference between trial 

and expected to the expected value. Deviation shows a perfect acceptance limit for the adopted 

methodology. 

Table 5. Validation of results for BR and TR 

No. 

Process parameters Bulge ratio Thinning ratio 

P in 

Bar 

F in 

Mm/

sec 

L in 

mm 
Predicted 

Experi-

ment 

Deviatio

n (%) 
Predicted 

Experi

-ment 

Deviation 

(%) 

1 225 0.20 190 1.49625 1.45 3.09 0.10375 0.11 0.431 

2 225 0.35 210 1.162125 1.10 5.35 0.177375 0.14 3.398 

3 225 0.50 230 1.191 1.20 0.76 0.317 0.33 1.083 

4 250 0.20 210 1.4445 1.55 7.30 0.0945 0.13 2.290 

5 250 0.35 230 1.132 1.01 10.8 0.23675 0.25 1.312 

6 250 0.50 190 1.2245 1.22 0.37 0.214 0.24 2.131 

7 275 0.20 230 1.54175 1.50 2.71 0.14825 0.14 0.55 

8 275 0.35 190 1.613875 1.52 5.82 0.132625 0.12 0.831 

9 275 0.5 210 1.1415 1.16 1.621 0.3105 0.31 0.043 

3.3. Impact of single and joint levels of HFIPs on BR 

The influence of single HFIPs levels of IP shows a direct impact on BR variation like it 

increments with an increase of IP and yields to the higher load on the tube sheet. Because of 
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growing IP, the material keeps deforming until it reaches the ultimate strength. The impact of 

single HFIP levels of F also shows the same effect on BR like P. As this F was increasing, its value 

brought the material into an expansion state. Further material gets added to regulate and minimize 

the tube size (thickness) at the maximum bulging point. It provides necessary material at the 

expansion zone to attain the maximum bulging in this way. 

Similarly, the influence of a third HFIP, L, on BR shows an inverse relationship as BR 

decreases with increasing L because an excess substance is not provided to a forming region by an 

AF. With the IP, the material gets thin at the maximum bulge point, and the tube will be under 

bursting failure, as exhibited in Figure 4a. Figure 4b elucidates the increasing level of AF and IP 

has a direct interactive influence on increasing BR. Due to the simultaneous increase of AF and IP, 

the BR rises more than AF and IP's individual impact. Figure 4c illustrates the interactive influence 

of L and IP on BR wherein BR increases with factor IP and decreasing with factor L. Joint impact 

of L and IP on BR shows it increased reasonably with the rise of both factors L and IP. Similarly, 

this is also true in the combined impact of HFIPs like L and AF, where BR increased moderately 

with the increase of both L and AF. At their individual levels, the BR value rises with the decrease 

of L and an increase of AF (refer to Figure 4d).  

 

            

                               (a)                                                                    (b) 

   

            (c)           (d)            (e) 

Figure 4. Main effect of (a) IP, AF, & L and Interaction effect of (b) of all factors (c) AF & IP (d) L 

& IP and (e) L & AF on BR 

3.4. Single and joint level impact of HFIPs on TR 

The importance of IP, AF, and L on TR are illustrated in Figure 5(a), show that the rise of 

TR occurs when IP increases as it causes the maximum bulge by thinning the tube. The TR is the 

ratio of difference of tube thickness to initial thickness. Therefore, a higher TR means additional 

variation in the thickness of the THF process. Similarly, the AF on TR shows that TR decreased 
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with the AF increase as it causes extra material to be drawn into the expansion zone. Also, it 

compensates for the thinning of the tube along with increased bulge of the tube. This produces the 

wrinkles on the final shape of the tube. L's impact on the increasing TR is growing as the required 

material does not reach the forming zone by the AF alone. With the increasing L, the higher AF is 

expected to drive the substance into the forming region. 

      

         (a)        (b) 

   

 

             (c)    (d)     (e) 

Figure 5. Main effect of (a) IP, AF, & L and Interaction effect of (b) of all factors (c) AF & IP (d) L 

& IP and (e) L & AF on TR 

The Impact of factors increased TR with individual level of rising of IP and fall of AF. But at 

their combined level, TR has been increased satisfactorily with increasing AF and IP, as displayed 

in Figure 5b. Figure 5c demonstrates the TR increased with increasing combined levels of L and IP 

significantly. Referring to Figure 5 (d), TR rises with L's rising and AF's decreasing values when 

the individual HFIP levels are considered. The combined impact of L and AF showed that their 

increasing levels raise the TR relatively. 

3.5. Interpretation of optimized state using GA based PSO  

In this investigation, minimizing the TR and the maximization of BR were considered as the 

objective functions. Maximum BR/ bulging capacity signifies the tube material's distortion ability 

to bear out any shape by the THF process. On the other hand, the tube thickness was found to 

decrease with the increase of the bulging height, causing lower strength of the HF components. The 

objective functions for the BR and TR are formulated as optimizing model is given as shown in 

Figure 6 and Eqs (5) & (6) ( Mohanty, Mahapatra & Singh, 2016):  

F (1) =(8.8-0.0028*P+2.14*F-0.0682*L-0.0625*P*F+0.000149*P*L+0.0605*F*L);         (5) 

F (2) =-(3.56-0.0130*P-1.93*F-0.0174*L+0.0011*P*F+0.000063*P*L+0.0110*F*L);      (6) 
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The BR, TR, and the possible ranges of the input factors are identified with an outlook to 

have maximum BR and minimum TR without wrinkles or defects. Possible limits of the input 

factors are enlisted in Table 6.  

Table 6. Permissible bounds of the input factors 

Factors Lower bound  Upper bound  

Internal Pressure (P) 225 275 

Axial Movement (AM) 0.2 0.5 

Tube Length (L) 190 230 

 

Figure 6. Objective functions defined in MATLAB workspace 

 

 

Figure 7. Optimization tool with limits, population size, pareto front plots etc. 

After formulating the optimization state, the optimization problem is worked out using the 

genetic algorithm-based PSO for multiple objectives optimization using the MATLAB software 

optimization tool (refer Figure 7). Various sets of an optimal combination of HFIPs are 
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accomplished. An initial population of 80 is selected for evaluating objective functions, and it uses 

the Pareto front plot for the best global optimal solutions obtained, as shown in Figure 8. 

Corresponding values of plots are enlisted in Table 7. 

Table 7. Best Global optimal solutions from PSO 

S.No. P F L BR TR 

1 225.5 0.206 229.5 0.62453 0.068779 

2 260.43 0.5 229.5 1.19837 0.3870145 

3 241.53 0.463 229.49 1.16154 0.317444 

4 226.73 0.3713 229.541 0.954252 0.210734 

5 226.726 0.3589 229.538 0.93130 0.200273 

6 225.412 0.233 229.604 0.67433 0.091798 

7 227.237 0.3604 229.559 0.93840 0.20253 

8 245.218 0.4825 229.513 1.1839 0.3414 

9 226.242 0.307 229.538 0.82873 0.1555 

10 254.698 0.4952 229.488 1.19702 0.37123 

11 226.722 0.2732 229.596 0.7712 0.12795 

12 227.762 0.4252 229.512 1.0596 0.25818 

13 225.883 0.2559 229.576 0.7264 0.11183 

14 231.986 0.4321 229.5 1.0907 0.27222 

15 226.527 0.2079 229.518 0.6478 0.07249 

16 226.181 0.3 229.572 0.8144 0.14953 

17 232.647 0.4643 229.526 1.1412 0.30092 

18 239.6598 0.4364 229.484 1.1289 0.2907 

19 226.608 0.3206 229.55 0.8588 0.16775 

20 244.414 0.4799 229.489 1.181 0.3375 

21 227.649 0.4112 229.523 1.0338 0.2462 

22 225.237 0.2001 229.629 0.6062 0.0636 

23 252.539 0.4794 229.534 1.1922 0.3533 

24 227.6 0.394 229.586 1.002 0.2317 

25 229.03 0.3785 229.539 0.9855 0.22114 

26 233.591 0.4423 229.516 1.1122 0.2841 

27 226.434 0.3313 229.515 0.8774 0.17647 

28 226.7197 0.3525 229.493 0.92 0.19485 

29 230.209 0.3818 229.537 1.0001 0.2262 
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30 227.027 0.282 229.517 0.7931 0.13589 

31 226.41 0.234 229.562 0.6937 0.09428 

32 226.978 0.2367 229.544 0.7085 0.09754 

33 225.779 0.2695 229.62 0.75 0.1231 

34 225.478 0.2232 229.57 0.6568 0.08354 

35 225.722 0.3165 229.55 0.8408 0.1627 

 

 

Figure 8. Pareto front solutions of GA based PSO of Multi outputs 

 

4. Conclusions  

In the present work, design of experiments-based trials, ANOVA for regression models, RS 

analysis, and GA based multi response PSO (using Pareto front solutions) were used to optimize 

the bulge and Thinning ratio. Impact of HFIPs, namely, IP, AF, and L for the THF of Inconel 600. 

Experiments were carried out as per the Taguchi OA table to bring down the attempts of 

experimentations significantly. RSM developed higher-order correlational models (CM) for the BR 

and TR as a function of chosen HFIPs. The predicted CM are tested for their significance using 

ANOVA, R2, Rs plots, and the verification tests. The entire process is optimized using GA based 

MRPSO is automated with the recommended procedure. It yields optimal sets of combinations of 

HFIPs to help the machinists choose the right HFIPs according to process requirements.   

These are the following observations derived from the present examinations.  

1. From the simulation results, the R2 values of the second-order model obtained for bulge 

ratio and thinning ratio are found to be 0.9229, and 0.9611 shows a good fit of the 

predictive model results and the simulated results.  

2. An optimizing state is subsequently framed to maximize the BR subjected to minimum 

TR as constraints. GA-based MRPSO with Pareto front plots is used to reach near the 

optimal global solution providing various combinations of an optimal set of parameters 

and satisfying the requirements. 

3. The CM has been derived to predict the bulge ratio and thinning ratio for different 

combinations of factor settings from the RSM and validated with the experimental 

results to obtain high-quality parts of THF. 

http://www.rria.ici.ro/
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4. From the simulated results, it is observed that the increase in IP has a significant effect 

on the maximum BR and the effect of axial movement on TR has substantial influence 

are validated with experiments. 

5. A bulge ratio of 1.4497 and thinning ratio of 0.1095 from experimental values and bulge 

ratio is increased to 1.464, and the thinning ratio is decreased to 0.106 after GA-MRPSO. 

It is noted at IP=268 Bar, AF=0.38 mm/sec, and L=198 mm are validated through test 

runs on the same experimental setup.  

6. The interactive or combined effects of HFIPs like IP, AF, and L on the BR and TR are 

demonstrated and analyzed, showed that the combined impact of AF and IP is more on 

the enhancement of BR with lowering TR.  

 

The present work was limited to a few HFIPs for conducting experiments and further 

analysis by increasing them to 4 or 5 depending on availability and THF machine's capacity. 

Furthermore, applying other available optimization techniques may also find the optimal HFIPs 

like ANN (Artificial neural networks), GA, etc. Comparisons were made between the two 

optimization techniques for suggesting the most suitable method. The present research is applied 

only for the free-forming stage and can be extended to analyze the calibration stage. 
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